From CFD-Wiki
function [TCm,RowNdx,ColNdx]=TCMatSW(eu,Xe, Elcon, nn2tft,Vdof)
% TCMatSW - Returns the element thermal convection matrix for
% segregated solution using the simple-cubic Hermite basis Temperature
% functions on 4-node rectangular elements with 3 DOF per node using
% Gauss quadrature on the reference square.
% Uses 4-node quartic velocity functions with 6 dof per node.
% The columns of the array Vdof must contain the three degree-of-freedom
% vectors in the nodal order (psi,u,v).
% The assumed nodal numbering starts with 1 at the lower left corner
% of the element and proceeds counter-clockwise around the element.
%
% Usage:
% [TCm,RowNdx,ColNdx]=TCMatSW(Xe, Elcon, nn2nft,Vdof)
% Xe(1,:) - x-coordinates of 4 corner nodes of element.
% Xe(2,:) - y-coordinates of 4 corner nodes of element.
% Elcon(4) - connectivity matrix for this element, list of nodes.
% nn2tft(n,1) - global freedom number for node n.
% nn2tft(n,2) - global freedom type for node n.
% Vdof - (nx4) array of stream function and velocity components
% (psi,u,v) to specify the velocity over the element.
% eu - class of shape function definitions
%
% Jonas Holdeman, January 2009 Revised 2013
% ------------------ Constants and fixed data ----------------------------
%eu = ELS4424r;
et = ELG3412r;
nnd = eu.nnodes; % number of nodes per element (4);
nV = eu.nndofs; % nndofs = number of dofs per node, (3|6);
nT = et.nndofs; % nndofs = number of dofs per node, (3);
nn = eu.nn; % defines local nodal order, [-1 -1; 1 -1; 1 1; -1 1]
nfT = nnd*nT; % nT = number of T dofs per node, nfT = number T dofs.
nfV = nnd*nV; % nV = number of V dofs per node, nfV = number V dofs.
NDT = 1:nT; NDV = 1:nV;
% ------------------------------------------------------------------------
% Define Gaussian quadrature data once, on first call.
persistent QQ_TCr;
if isempty(QQ_TCr)
QRorder = eu.mxpowr+2*et.mxpowr-4; % -2,
[QQ_TCr.xa, QQ_TCr.ya, QQ_TCr.wt, QQ_TCr.nq] = eu.hQuad(QRorder);
end % if isempty...
xa = QQ_TCr.xa; ya = QQ_TCr.ya; wt = QQ_TCr.wt; Nq = QQ_TCr.nq;
% ------------------------------------------------------------------------
persistent ZZ_Stc; persistent ZZ_gtc; persistent ZZ_Gtc;
if (isempty(ZZ_Stc)||size(ZZ_Stc,2)~=Nq)
% Evaluate and save/cache the set of shape functions at quadrature pts.
ZZ_Stc=cell(nnd,Nq); ZZ_gtc=cell(nnd,Nq); ZZ_Gtc=cell(nnd,Nq);
for k=1:Nq
for m=1:nnd
ZZ_Stc{m,k} =eu.S(nn(m,:),xa(k),ya(k));
ZZ_gtc{m,k}=et.g(nn(m,:),xa(k),ya(k));
ZZ_Gtc{m,k}=et.G(nn(m,:),xa(k),ya(k));
end
end
end % if(isempty(*))
% -------------------------- End fixed data ------------------------------
affine = eu.isaffine(Xe); % affine?
Ti=cell(nnd); TBi=cell(nnd);
if affine % (J constant)
% Jt=[x_q, x_r; y_q, y_r];
Jt=Xe*eu.Gm(nn(:,:),0,0);
JtiD=[Jt(2,2),-Jt(1,2); -Jt(2,1),Jt(1,1)]; % det(J)*inv(J)
if nV<4,
for m=1:nnd, Ti{m}=blkdiag(1,JtiD); end
else
T2=[Jt(1,1)^2, 2*Jt(1,1)*Jt(1,2), Jt(1,2)^2; ... % alt
Jt(1,1)*Jt(2,1), Jt(1,1)*Jt(2,2)+Jt(1,2)*Jt(2,1), Jt(1,2)*Jt(2,2); ...
Jt(2,1)^2, 2*Jt(2,1)*Jt(2,2), Jt(2,2)^2];
T6=blkdiag(1,JtiD,T2);
Bxy=Xe*eu.DGm(nn(:,:),0,0); % Second cross derivatives
T6(5,2:3)=Bxy([2,1])';
for m=1:nnd, Ti{m}=T6; end
end % nV...
TB = blkdiag(1,Jt');
for m=1:nnd, TBi{m}=TB; end
Det=Jt(1,1)*Jt(2,2)-Jt(1,2)*Jt(2,1); % Determinant of Jt & J
Jtd=Jt/Det;
Ji=[Jt(2,2),-Jt(2,1); -Jt(1,2),Jt(1,1)]/Det;
else
for m=1:nnd
Jt=Xe*eu.Gm(nn(:,:),nn(m,1),nn(m,2));
JtiD=[Jt(2,2),-Jt(1,2); -Jt(2,1),Jt(1,1)]; % det(J)*inv(J)
if nV<4,
Ti{m}=blkdiag(1,JtiD);
else
T2=[Jt(1,1)^2, 2*Jt(1,1)*Jt(1,2), Jt(1,2)^2; ... % alt
Jt(1,1)*Jt(2,1), Jt(1,1)*Jt(2,2)+Jt(1,2)*Jt(2,1),Jt(1,2)*Jt(2,2);...
Jt(2,1)^2, 2*Jt(2,1)*Jt(2,2), Jt(2,2)^2];
T6=blkdiag(1,JtiD,T2);
Bxy=Xe*eu.DGm(nn(:,:),nn(m,1),nn(m,2)); % Second cross derivatives
T6(5,2:3)=Bxy([2,1])';
Ti{m}=T6;
end % nV...
TBi{m} = blkdiag(1,Jt');
end % for m=...
end % if affine...
% Preallocate arrays
TCm=zeros(nfT,nfT); S=zeros(2,nfV); g=zeros(1,nfT); G=zeros(2,nfT);
% Begin loop over Gauss-Legendre quadrature points.
for k=1:Nq
if ~affine
Jt=Xe*es.Gm(nn(:,:),xa(k),ya(k)); % transpose of Jacobian at (xa,ya)
Det=Jt(1,1)*Jt(2,2)-Jt(1,2)*Jt(2,1); % Determinant of Jt & J
Jtd=Jt/Det;
Ji=[Jt(2,2),-Jt(2,1); -Jt(1,2),Jt(1,1)]/Det;
end
% Initialize arrays of functions and derivatives at the quadrature point (xa,ya).
mv = 0; mt = 0;
for m=1:nnd
S(:,mv+NDV)= Jtd*ZZ_Stc{m,k}*Ti{m}; mv = mv+nV;
g(1,mt+NDT)= ZZ_gtc{m,k}*TBi{m};
G(:,mt+NDT)= Ji*ZZ_Gtc{m,k}*TBi{m}; mt = mt+nT;
end % loop m
% Compute the fluid velocity at the quadrature point.
U = S*Vdof(:);
% Label rows by the test (weight) function index, columns by trial function index?
% Submatrix ordered by T, Tx, Ty
TCm=TCm+(g'*(U(1)*G(1,:)+U(2)*G(2,:)))*(Det*wt(k));
end % loop k over quadrature points
gf=zeros(nfT,1);
m=0;
for k=1:nnd % Loop over element nodes
gf(m+NDT)=(nn2tft(Elcon(k),1)-1)+NDT; % Global freedoms for this node
m=m+nT;
end % loop on k
RowNdx=repmat(gf,1,nfT);
ColNdx=RowNdx';
RowNdx=reshape(RowNdx,nfT*nfT,1);
ColNdx=reshape(ColNdx,nfT*nfT,1);
TCm=reshape(TCm,nfT*nfT,1);
return;