CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home >

CFD Journal Feeds

Annual Review of Fluid Mechanics top

► Rapidly Rotating Magnetohydrodynamics and the Geodynamo
    1 Oct, 2024

The problem of the geodynamo is simple to formulate (Why does the Earth possess a magnetic field?), yet it proves surprisingly hard to address. As with most geophysical flows, the fluid flow of molten iron in the Earth's core is strongly influenced by the Coriolis effect. Because the liquid is electrically conducting, it is also strongly influenced by the Lorentz force. The balance is unusual in that, whereas each of these effects considered separately tends to impede the flow, the magnetic field in the Earth's core relaxes the effect of the rapid rotation and allows the development of a large-scale flow in the core that in turn regenerates the field. This review covers some recent developments regarding the interplay between rotation and magnetic fields and how it affects the flow in the Earth's core.

► Vortex-Induced Vibration of Flexible Cylinders in Cross-Flow
  30 Sep, 2024

This review provides a comprehensive analysis of the literature on vortex-induced vibration (VIV) of flexible circular cylinders in cross-flow. It delves into the details of the underlying physics governing the VIV dynamics of cylinders characterized by low mass damping and high aspect ratio, subject to both uniform and shear flows. It compiles decades of experimental investigations, modeling efforts, and numerical simulations and describes the fundamental findings in the field. Key focal points include but are not limited to amplitude–frequency response behavior, the relationship between the distributed loading acting on the cylinder and the trajectories and the near wake structures around the cylinder, the existence of traveling waves, the identification of power-in/power-out regions, and the modal overlapping and mode competition phenomena.

► Turbulence from an Observer Perspective
  30 Sep, 2024

Turbulence is often studied by tracking its spatiotemporal evolution and analyzing the dynamics of its different scales. The dual to this perspective is that of an observer who starts from measurements, or observations, of turbulence and attempts to identify their back-in-time origin, which is the foundation of data assimilation. This back-in-time search must contend with the action of chaos, which obfuscates the interpretation of the observations. When the available measurements satisfy a critical resolution threshold, the influence of chaos can be entirely mitigated and turbulence can be synchronized to the exact state–space trajectory that generated the observations. The critical threshold offers a new interpretation of the Taylor microscale, one that underscores its causal influence. Below the critical threshold, the origin of measurements becomes less definitive in regions where the flow is inconsequential to the observations. In contrast, flow events that influence the measurements, or are within their domain of dependence, are accurately captured. The implications for our understanding of wall turbulence are explored, starting with the highest density of measurements that entirely tame chaos and proceeding all the way to an isolated measurement of wall stress. The article concludes with a discussion of future opportunities and a call to action.

► Physicochemical Hydrodynamics of Particle Diffusiophoresis Driven by Chemical Gradients
  25 Sep, 2024

Chemical gradients, the spatial variations in chemical concentrations and components, are omnipresent in environments ranging from biological and environmental systems to industrial processes. These thermodynamic forces often play a central role in driving transport processes taking place in such systems. This review focuses on diffusiophoresis, a phoretic transport phenomenon driven by chemical gradients. We begin by revisiting the fundamental physicochemical hydrodynamics governing the transport. Then we discuss diffusiophoresis arising in flow systems found in natural and artificial settings. By exploring various scenarios where chemical gradients are encountered and exploited, we aim to demonstrate the significance of diffusiophoresis and its state-of-the-art development in technological applications.

► Freezing and Capillarity
  25 Sep, 2024

Ice structures such as accretion on airplanes, wires, or roadways; ice falls; ice stalactites; frozen rivers; and aufeis are formed by the freezing of capillary flows (drops, rivulets, and films). To understand these phenomena, a detailed exploration of the complex coupling between capillary flow and solidification is necessary. Among the many scientific questions that remain open in order to understand these problems are the confinement of the thermal boundary layer by the free surface, the interaction between a freezing front and a free surface, the effect of freezing on the contact line motion, etc. This review focuses mainly on water and ice, discussing the theoretical framework and recent developments in the main areas of the freezing–capillarity interaction. The text deeply explores the freezing of a moving drop or a rivulet and the fundamental problem of wetting water on ice. Additionally, it highlights some of the main open questions on the subject.

► Fluid Mechanics of the Dead Sea
  11 Sep, 2024

The environmental setting of the Dead Sea combines several aspects whose interplay creates flow phenomena and transport processes that cannot be observed anywhere else on Earth. As a terminal lake with a rapidly declining surface level, the Dead Sea has a salinity that is close to saturation, so that the buoyancy-driven flows common in lakes are coupled to precipitation and dissolution, and large amounts of salt are being deposited year-round. The Dead Sea is the only hypersaline lake deep enough to form a thermohaline stratification during the summer, which gives rise to descending supersaturated dissolved-salt fingers that precipitate halite particles. In contrast, during the winter the entire supersaturated, well-mixed water column produces halite. The rapid lake level decline of (1 m/year) exposes vast areas of newly formed beach every year, which exhibit deep incisions from streams. Taken together, these phenomena provide insight into the enigmatic salt giants observed in the Earth's geological record and offer lessons regarding the stability, erosion, and protection of arid coastlines under sea level change.

► Instabilities and Mixing in Inertial Confinement Fusion
  11 Sep, 2024

By imploding fuel of hydrogen isotopes, inertial confinement fusion (ICF) aims to create conditions that mimic those in the Sun's core. This is fluid dynamics in an extreme regime, with the ultimate goal of making nuclear fusion a viable clean energy source. The fuel must be reliably and symmetrically compressed to temperatures exceeding 100 million degrees Celsius. After the best part of a century of research, the foremost fusion milestone was reached in 2021, when ICF became the first technology to achieve an igniting fusion fuel (thermonuclear instability), and then in 2022 scientific energy breakeven was attained. A key trade-off of the ICF platform is that greater fuel compression leads to higher burn efficiency, but at the expense of amplified Rayleigh–Taylor and Richtmyer–Meshkov instabilities and kinetic-energy-wasting asymmetries. In extreme cases, these three-dimensional instabilities can completely break up the implosion. Even in the highest-yielding 2022 scientific breakeven experiment, high-atomic-number (high-Z) contaminants were unintentionally injected into the fuel. Here we review the pivotal role that fluid dynamics plays in the construction of a stable implosion and the decades of improved understanding and isolated experiments that have contributed to fusion ignition.

► Multiscale Modeling of Respiratory Transport Phenomena and Intersubject Variability
  27 Aug, 2024

Our understanding of respiratory flow phenomena has been consolidated over decades with the exploration of in vitro and in silico canonical models that underscore the multiscale fluid mechanics spanning the vast airway complex. In recent years, there has been growing recognition of the significant intersubject variability characterizing the human lung morphometry that modulates underlying canonical flows across subjects. Despite outstanding challenges in modeling and validation approaches, exemplified foremost in capturing chronic respiratory diseases, the field is swiftly moving toward hybrid in silico whole-lung simulations that combine various model classes to resolve airflow and aerosol transport spanning the entire respiratory tract over cumulative breathing cycles. In the years to come, the prospect of accessible, community-curated datasets, in conjunction with the use of machine learning tools, could pave the way for in silico population-based studies to uncover unrecognized trends at the population level and deliver new respiratory diagnostic and pulmonary drug delivery endpoints.

► Geometric Approaches to Lagrangian Averaging
  15 Aug, 2024

Lagrangian averaging theories, most notably the generalized Lagrangian mean (GLM) theory of Andrews and McIntyre, have been primarily developed in Euclidean space and Cartesian coordinates. We reinterpret these theories using a geometric, coordinate-free formulation. This gives central roles to the flow map, its decomposition into mean and perturbation maps, and the momentum 1-form dual to the velocity vector. In this interpretation, the Lagrangian mean of any tensorial quantity is obtained by averaging its pull-back to the mean configuration. Crucially, the mean velocity is not a Lagrangian mean in this sense. It can be defined in a variety of ways, leading to alternative Lagrangian mean formulations that include GLM and Soward and Roberts's volume-preserving version. These formulations share key features that the geometric approach uncovers. We derive governing equations both for the mean flow and for wave activities constraining the dynamics of the perturbations. The presentation focuses on the Boussinesq model for inviscid rotating stratified flows and reviews the necessary tools of differential geometry.

► Clogging of Noncohesive Suspension Flows
  31 Jul, 2024
Abstract

When flowing through narrow channels or constrictions, many-body systems exhibit various flowing patterns, yet they can also get stuck. In many of these systems, the flowing elements remain as individuals (they do not aggregate or merge), sharing strong analogies among each other. This is the case for systems as contrasting as grains in a silo and pedestrians passing through tight spaces. Interestingly, when these entities flow within a fluid medium, numerous similarities persist. However, the fluid dynamics aspects of such clogging events, such as interstitial flow, liquid pressure, and hydrodynamic interactions, has only recently begun to be explored. In this review, we describe parallels with dry granular clogging and extensively analyze phenomena emerging when particles coexist with fluid in the system. We discuss the influence of diverse flow drive, particle propulsion mechanisms, and particle characteristics, and we conclude with examples from nature.

Computers & Fluids top

► High-order gas kinetic flux solver with TENO-THINC scheme for compressible flows
    

Publication date: 30 January 2025

Source: Computers & Fluids, Volume 287

Author(s): Lan Jiang, Jie Wu, Liming Yang, Qiushuo Qin

► SPH simulations of non-isothermal viscoplastic free-surface flows incorporating Herschel-Bulkley-Papanastasiou model
    

Publication date: 30 January 2025

Source: Computers & Fluids, Volume 287

Author(s): Xiaoyang Xu, Wei Yu

► An Eulerian-Lagrangian decomposition for scalar transport at high schmidt number with adaptive particle creation and removal
    

Publication date: 30 January 2025

Source: Computers & Fluids, Volume 287

Author(s): A. Karimi Noughabi, M. Leer, I. Wlokas, A. Kempf

► Blade-resolved and actuator line simulations of rotor wakes
    

Publication date: 30 January 2025

Source: Computers & Fluids, Volume 287

Author(s): André F.P. Ribeiro, Thomas Leweke, Aliza Abraham, Jens N. Sørensen, Robert F. Mikkelsen

► A new sharing function for the common-weights WENO reconstruction of the Euler equations
    

Publication date: 30 January 2025

Source: Computers & Fluids, Volume 287

Author(s): Yiqiu Jin, Yiqing Shen, Guowei Yang, Guannan Zheng

► Editorial Board
    

Publication date: 30 January 2025

Source: Computers & Fluids, Volume 287

Author(s):

► Boundary treatment for variational quantum simulations of partial differential equations on quantum computers
    

Publication date: Available online 10 December 2024

Source: Computers & Fluids

Author(s): Paul Over, Sergio Bengoechea, Thomas Rung, Francesco Clerici, Leonardo Scandurra, Eugene de Villiers, Dieter Jaksch

► Very high order finite volume solver for multi component two-phase flow with phase change using a posteriori Multi-dimensional Optimal Order Detection
    

Publication date: Available online 11 December 2024

Source: Computers & Fluids

Author(s): Michael Deligant, Carlos Romero, Xesus Nogueira, Luis Ramirez, Mathieu Specklin, Farid Bakir, Sofiane Khelladi

► Integration of Lattice Boltzmann-overset method with non-conforming quadtree mesh based on the combination of spatial and Lagrangian-link interpolated streaming technique
    

Publication date: Available online 11 December 2024

Source: Computers & Fluids

Author(s): Abdallah ElSherbiny, Sébastien Leclaire

► A comparative computational study of different formulations of the compressible Euler equations for mesoscale atmospheric flows in a finite volume framework
    

Publication date: Available online 11 December 2024

Source: Computers & Fluids

Author(s): M. Girfoglio, A. Quaini, G. Rozza

International Journal of Computational Fluid Dynamics top

► Enhanced Impeller Gas-Liquid Flow Using Ribs for High Performance of Centrifugal Pump
    4 Nov, 2024
.
► A GPU-Based Lattice Boltzmann Method for Predicting Near- and Far-Field Jet Noise
    8 Oct, 2024
.
► The Method of Manufactured Solutions to Construct Flow Fields Across An Interface
  17 Sep, 2024
.
► A New Fifth-Order Weighted Compact Nonlinear Scheme with Multi-Order Candidates Weighting for Hyperbolic Conservation Laws
  17 Sep, 2024
Volume 38, Issue 1, January 2024, Page 1-27
.
► Investigation of Blade Cascade Torsional Flutter Using the Discontinuous Galerkin Approach in Correlation with Experimental Measurements
    5 Sep, 2024
Volume 38, Issue 1, January 2024, Page 45-60
.
► Exploring Dual Solutions and Characterisation of Viscous Dissipation Effects on MHD Flow along a Stretching Sheet with Variable Thickness: A Computational Approach
  27 Aug, 2024
Volume 38, Issue 1, January 2024, Page 28-44
.
► Erratum
  18 Aug, 2014
.

International Journal for Numerical Methods in Fluids top

► The Matrix‐Free Macro‐Element Hybridized Discontinuous Galerkin Method for Steady and Unsteady Compressible Flows
    2 Dec, 2024
The Matrix-Free Macro-Element Hybridized Discontinuous Galerkin Method for Steady and Unsteady Compressible Flows

We investigate the macro-element hybridized discontinuous Galerkin (HDG) method that combines advantages of continuous and discontinuous finite elements for compressible flow analysis. To efficiently handle large systems, we focus on computational strategies at the level of the direct local solver and the matrix-free iterative global solver. Our test simulations show that the macro-element HDG method is efficient for moderate polynomial degrees, balances local and global operations, and compared to standard HDG reduces the global system size and the number of solver iterations.


ABSTRACT

The macro-element variant of the hybridized discontinuous Galerkin (HDG) method combines advantages of continuous and discontinuous finite element discretization. In this paper, we investigate the performance of the macro-element HDG method for the analysis of compressible flow problems at moderate Reynolds numbers. To efficiently handle the corresponding large systems of equations, we explore several strategies at the solver level. On the one hand, we utilize a second-layer static condensation approach that reduces the size of the local system matrix in each macro-element and hence the factorization time of the local solver. On the other hand, we employ a multi-level preconditioner based on the FGMRES solver for the global system that integrates well within a matrix-free implementation. In addition, we integrate a standard diagonally implicit Runge–Kutta scheme for time integration. We test the matrix-free macro-element HDG method for compressible flow benchmarks, including Couette flow, flow past a sphere, and the Taylor–Green vortex. Our results show that unlike standard HDG, the macro-element HDG method can operate efficiently for moderate polynomial degrees, as the local computational load can be flexibly increased via mesh refinement within a macro-element. Our results also show that due to the balance of local and global operations, the reduction in degrees of freedom, and the reduction of the global problem size and the number of iterations for its solution, the macro-element HDG method can be a competitive option for the analysis of compressible flow problems.

► A new non‐equilibrium modification of the k−ω$$ k-\omega $$ turbulence model for supersonic turbulent flows with transverse jet
    2 Dec, 2024
A new non-equilibrium modification of the k−ω$$ k-\omega $$ turbulence model for supersonic turbulent flows with transverse jet

The study proposed a new correction of non-equilibrium terms for the k−ω$$ k-\omega $$ turbulence model. The suggested method of correcting the non-equilibrium effect can be useful in the future to formulate high-speed models based on all turbulent mechanisms.


Abstract

The goal of this research is to propose a new modification of a non-equilibrium effect in the k−ω$$ k-\omega $$ turbulence model to better predict high-speed turbulent flows. For that, the two local compressibility coefficients are included in the balance production/dissipation terms in a specific dissipation rate equation. The specific dissipation rate reacts to changes in the local Mach number and density through these local coefficients. The developed model is applied to the numerical simulation of the spatial supersonic turbulent airflow with round hydrogen injection. In that, the effects of the proposed turbulence model on the flow field behavior (shock wave and vortex formations, shock wave/boundary layer interaction, and mixture layer) are studied via the solution of three-dimensional Favre-averaged Navier–Stokes equations with a third-order Essentially Non-Oscillatory scheme. A series of numerical experiments are performed, in which an allowable range of local constants by comparing results with experimental data is obtained. The non-equilibrium modification by simultaneous decrease of the turbulence kinetic energy and increase of the specific dissipation rate gives a good agreement of the hydrogen depth penetration with experimental data. Also, the numerical experiment of the supersonic airflow with a nitrogen jet shows wall pressure distribution is consistent well with experimental data.

► Issue Information
    2 Dec, 2024
International Journal for Numerical Methods in Fluids, Volume 97, Issue 1, January 2025.
► Development of a new solver for homogenous mixture based on regularized gas dynamic equation system
    2 Dec, 2024
Development of a new solver for homogenous mixture based on regularized gas dynamic equation system

The paper presents an improved approach for modelling multi-component gas mixtures based on quasi-gasdynamic equations. The proposed numerical algorithm is implemented as a reactingQGDFoam solver based on the open-source OpenFOAM platform. This solver has been extensively validated and verified through a variety of well-described test problems. The stability and convergence parameters of the proposed numerical algorithm are determined. The simulation results are found to be in agreement with analytical solutions and experimental data.


Abstract

The paper presents an improved approach for modeling multicomponent gas mixtures based on quasi-gasdynamic equations. The proposed numerical algorithm is implemented as a reactingQGDFoam solver based on the open-source OpenFOAM platform. The following problems have been considered for validation: the Riemann problems, the backward facing step problem, the interaction of a shock wave with a heavy and a light gas bubble, the unsteady underexpanded hydrogen jet flow in an air. The stability and convergence parameters of the proposed numerical algorithm are determined. The simulation results are found to be in agreement with analytical solutions and experimental data.

► Response surface method‐based hydraulic performance optimization of a single‐stage centrifugal pump
    2 Dec, 2024
Response surface method-based hydraulic performance optimization of a single-stage centrifugal pump

Response surface method-based hydraulic performance optimization of a single-stage centrifugal pump.


Abstract

In this article, the response surface approach was employed to enhance the hydraulic performance of the pump at the rated point. Specifically, an approximate link between the design head and efficiency of the single-stage centrifugal pump and the parameters of the impeller's design was established. The first step in creating a one-factor experimental design involved selecting significant geometric variables as factors. Decision variables such as the number of blades, flow rate, and rotation were chosen due to their significant impact on hydraulic performance, while head and efficiency were considered as responses. Subsequently, the best-optimized values for each level of the parameters were identified using response surface analysis and a central composite design. The impeller schemes of the Design-Expert software were evaluated for head and efficiency using Computational fluid dynamics, and a total of 20 experiments were conducted. The simulated results were then validated with experimental data. Through the analysis of the individual parameters and the approximation model, the ideal parameter combination that increased head and efficiency by 7.90% and 2.06%, respectively, at the rated value was discovered. It is worth noting that in cases of a high rate of flow, the inner flow was also enhanced.

► Turbulence effects in the topology optimization of compressible subsonic flow
    2 Dec, 2024
Turbulence effects in the topology optimization of compressible subsonic flow

This paper highlights the impact and importance of including turbulence effects on topology optimization of compressible flow. The study proposes a novel approach based on Favre-Averaged Navier–Stokes equations and the compressible version of the Spalart–Allmaras model and solves first the compressible turbulent adjoint model by coupling dolphin adjoint from FEniCS and OpenFOAM software. Examples demonstrate the effects of turbulence on compressible flow and analyze industrial cases such as pipes, diffusers and mixers chambers where non-intuitive and efficient designs are presented.


Abstract

Turbulence significantly influences fluid flow topology optimization, and this has already been verified under the incompressible flow regime. However, the same cannot be said about the compressible flow regime, in which the density field now affects and couples all of the fluid flow and turbulence equations and makes obtaining the adjoint model, which is necessary for topology optimization, extremely difficult. Up to now, the turbulence phenomenon has still not been considered in compressible flow topology optimization, which is what is being proposed and analyzed here. Rather than being based in the Reynolds-Averaged Navier–Stokes (RANS) equations which are defined only for incompressible flow, the equations are now based on the Favre-Averaged Navier–Stokes (FANS) equations, which are the counterpart of the RANS equations for compressible flow and feature different dependencies and terms. The compressible turbulence model being considered is the compressible version of the Spalart–Allmaras model, which differs from the usual Spalart–Allmaras model, since now there are some new spatially varying density and specific heat terms that depend on the primal variables and that act over some of the turbulence terms of the overall model. The adjoint equations are obtained by using an automatic differentiation scheme through a coupled software platform. The optimization algorithm is IPOPT, and some examples are presented to show the effect of turbulence in the compressible flow topology optimization.

► Semi‐implicit Lagrangian Voronoi approximation for the incompressible Navier–Stokes equations
    2 Dec, 2024
Semi-implicit Lagrangian Voronoi approximation for the incompressible Navier–Stokes equations

We introduce semi-implicit Lagrangian Voronoi approximation (SILVA), a novel numerical method for the solution of the incompressible Euler and Navier–Stokes equations, which combines semi-implicit time marching with time-dependent Voronoi tessellations with topology changes. In SILVA, the numerical solution is stored at particles, which move with the fluid velocity and play the role of the generators of the computational mesh. The velocity field is projected onto a divergence-free manifold. We validate SILVA by illustrative benchmarks, including viscous, inviscid, and multiphase flows.


Abstract

We introduce semi-implicit Lagrangian Voronoi approximation (SILVA), a novel numerical method for the solution of the incompressible Euler and Navier–Stokes equations, which combines the efficiency of semi-implicit time marching schemes with the robustness of time-dependent Voronoi tessellations. In SILVA, the numerical solution is stored at particles, which move with the fluid velocity and also play the role of the generators of the computational mesh. The Voronoi mesh is rapidly regenerated at each time step, allowing large deformations with topology changes. As opposed to the reconnection-based Arbitrary-Lagrangian-Eulerian schemes, we need no remapping stage. A semi-implicit scheme is devised in the context of moving Voronoi meshes to project the velocity field onto a divergence-free manifold. We validate SILVA by illustrative benchmarks, including viscous, inviscid, and multi-phase flows. Compared to its closest competitor, the Incompressible Smoothed Particle Hydrodynamics method, SILVA offers a sparser stiffness matrix and facilitates the implementation of no-slip and free-slip boundary conditions.

► Comment on the Paper “A Two‐Stage Reliable Computational Scheme for Stochastic Unsteady Mixed Convection Flow of Casson Nanofluid, Yasir Nawaz, Muhammad Shoaib Arif, Amna Nazeer, Javeria Nawaz Abbasi, Kamaleldin Abodayeh, International Journal for Numerical Methods in Fluids 2024;96:719–737”
  29 Nov, 2024
International Journal for Numerical Methods in Fluids, EarlyView.
► Numerical Investigation and Machine Learning Predictions for Enhanced Thermal Management in Pulsating Heat Pipes: Modeling Turbulent Flow and Heat Transfer Characteristics in Nuclear Applications
  23 Nov, 2024

ABSTRACT

This paper presents a comprehensive numerical investigation of the performance of pulsating heat pipes (PHPs) within nuclear reactor cooling systems. A volume of fluid (VOF) method was used to simulate the complex multiphase flow, providing detailed insights into fluid distribution, phase interactions, and temperature variations under different operating conditions. The simulations revealed distinct phase separation and convective flow patterns that enhance heat transfer efficiency, which is critical for optimizing thermal management in nuclear reactors. Additionally, artificial neural network (ANN) models were employed to predict volume fractions and wall temperatures, achieving high accuracy with R 2 values of 0.99 and 0.98, respectively, and low mean absolute errors (MAE). The ANN models also reduced computational time by 90% compared to traditional numerical simulations. These findings highlight the potential of PHPs to improve heat transfer in nuclear systems and demonstrate the practicality of ANN models for real-time thermal optimization. The research contributes to enhancing the safety and efficiency of nuclear reactor cooling systems, with broader implications for thermal management across various engineering applications.

► Novel Finite‐Volume Complete Flux Approximation Schemes for the Incompressible Navier–Stokes Equations
  21 Nov, 2024
Novel Finite-Volume Complete Flux Approximation Schemes for the Incompressible Navier–Stokes Equations

Using the finite-volume approach on a staggered mesh, we derive semidiscrete system for the transient incompressible Navier–Stokes equations. The calculation of the cell-face fluxes present in the semidiscrete system is carried out by solving suitably defined non-linear boundary value problems(BVP). Depending on physics based treatment of the source, three complete flux approximation schemes are derived and implemented on fluid flow benchmark problems.


ABSTRACT

We construct novel flux approximation schemes for the semidiscretized incompressible Navier–Stokes equations by finite-volume method on a staggered mesh. The calculation of the cell-face fluxes has been done by solving appropriate local non-linear boundary value problems (BVP). Consequently, the cell-face fluxes are represented as the sum of a homogeneous and an inhomogeneous flux; the homogeneous part represents the contribution of convection and viscous-friction, while the inhomogeneous part represents the contribution of the source terms. We derive three flux approximation schemes to include the impact of the source terms on the numerical fluxes. The first one is based on a homogeneous 1-D local BVP without source. The second scheme is based on an inhomogeneous 1-D local BVP considering only the pressure gradient term in the source. Finally, a complete flux scheme is derived which is based on an inhomogeneous 2-D local BVP. It takes into account both the gradient of the cross-flux and the pressure gradient in the source term. The numerical validation of the schemes is done for the benchmark lid-driven cavity flow for considerably high Reynolds$$ \mathrm{Reynolds} $$ numbers along with a numerical convergence test for the exact solution of the Taylor–Green vortex problem.

Journal of Computational Physics top

► Numerical investigation of a new class of models of Darcy-scale flows with flow-dependent permeability
    

Publication date: 1 February 2025

Source: Journal of Computational Physics, Volume 522

Author(s): Alexander A. Belozerov, Natalia B. Petrovskaya, Yulii D. Shikhmurzaev

► Disk harmonics for analysing curved and flat self-affine rough surfaces and the topological reconstruction of open surfaces
    

Publication date: 1 February 2025

Source: Journal of Computational Physics, Volume 522

Author(s): Mahmoud Shaqfa, Gary P.T. Choi, Guillaume Anciaux, Katrin Beyer

► Analysis of finite-volume transport schemes on cubed-sphere grids and an accurate scheme for divergent winds
    

Publication date: 1 February 2025

Source: Journal of Computational Physics, Volume 522

Author(s): Luan F. Santos, Joseph Mouallem, Pedro S. Peixoto

► A FFT-based phase-field framework for simulating dendritic growth in binary alloy
    

Publication date: 1 February 2025

Source: Journal of Computational Physics, Volume 522

Author(s): Arijit Sinhababu, Shyamprasad Karagadde

► High order accurate Hermite schemes on curvilinear grids with compatibility boundary conditions
    

Publication date: 1 February 2025

Source: Journal of Computational Physics, Volume 522

Author(s): Allen Alvarez Loya, Daniel Appelö, William D. Henshaw

► Rotating flux-tube model for local gyrokinetic simulations with background flow and magnetic shears
    

Publication date: 1 February 2025

Source: Journal of Computational Physics, Volume 522

Author(s): Shinya Maeyama, Tomo-Hiko Watanabe, Motoki Nakata, Masanori Nunami, Yuuichi Asahi, Akihiro Ishizawa

► Comparison between <em>a priori</em> and <em>a posteriori</em> slope limiters for high-order finite volume schemes
    

Publication date: 1 February 2025

Source: Journal of Computational Physics, Volume 522

Author(s): Jonathan Palafoutas, David A. Velasco Romero, Romain Teyssier

► A highly parallelized multiscale preconditioner for Darcy flow in high-contrast media
    

Publication date: 1 February 2025

Source: Journal of Computational Physics, Volume 522

Author(s): Changqing Ye, Shubin Fu, Eric T. Chung, Jizu Huang

► A deterministic–particle–based scheme for micro-macro viscoelastic flows
    

Publication date: 1 February 2025

Source: Journal of Computational Physics, Volume 522

Author(s): Xuelian Bao, Chun Liu, Yiwei Wang

► Parametrization and Cartesian representation techniques for robust resolution of chemical equilibria
    

Publication date: 1 February 2025

Source: Journal of Computational Physics, Volume 522

Author(s): Maxime Jonval, Ibtihel Ben Gharbia, Clément Cancès, Thibault Faney, Quang-Huy Tran

Journal of Turbulence top

► Large-scale reorientation in cubic Rayleigh–Bénard convection measured with particle tracking velocimetry
    6 Dec, 2024
.
► Upstream velocity fields induced by frontal jet injection in a square cylinder
  30 Oct, 2024
.
► Steady secondary flow in a turbulent boundary layer past a slender axisymmetric body
  18 Oct, 2024
.
► Experimental investigation of the flow disturbance near the trailing edge of slotted and non-slotted blades using skewness and kurtosis
  15 Oct, 2024
Volume 25, Issue 12, December 2024, Page 501-518
.
► Rotating machinery flow field prediction based on hybrid neural network
  14 Oct, 2024
Volume 25, Issue 12, December 2024, Page 482-500
.
► Small-scale Helmholtz resonators with grazing turbulent boundary layer flow
  11 Oct, 2024
Volume 25, Issue 12, December 2024, Page 461-481
.
► A comparative study of bandpass-filter-based multi-scale methods for turbulence energy cascade
  11 Sep, 2024
Volume 25, Issue 12, December 2024, Page 451-460
.

Physics of Fluids top

► A sharp interface immersed edge-based smoothed finite element method with extended fictitious domain scheme
  17 Apr, 2023
Physics of Fluids, Volume 35, Issue 4, April 2023.
This paper proposes a versatile and robust immersed edge-based smoothed finite element method with the mass conservation algorithm (IESFEM/Mass) to solve partitioned fluid–structure interaction (FSI). A gradient smoothing technique was used to solve the system governing equations, which can improve the calculated capability of the linear triangular elements in two phases. Based on the quadratic sharp interface representation of immersed boundary, an extended fictitious domain constructed by a least squares method approximately corrected the residual flux error. The compatibility for boundary conditions on moving interfaces was satisfied, thus eliminating spurious oscillations. The results from all numerical examples were consistent with those from the existing experiments and published numerical solutions. Furthermore, the present divergence-free vector field had a faster-converged rate in the flow velocity, pressure, and FSI force. Even if in distorted meshes, the proposed algorithm maintained a stable accuracy improvement. The aerodynamics of one- and two-winged flapping motions in insect flight has been investigated through the IESFEM/Mass. It can be seen that the wing–wake interaction mechanism is a vital factor affecting the lift. The applicability of the present method in the biological FSI scenario was also well-demonstrated.
► Enhanced and reduced solute transport and flow strength in salt finger convection in porous media
  17 Apr, 2023
Physics of Fluids, Volume 35, Issue 4, April 2023.
We report a pore-scale numerical study of salt finger convection in porous media, with a focus on the influence of the porosity in the non-Darcy regime, which has received little attention in previous research. The numerical model is based on the lattice Boltzmann method with a multiple-relaxation-time scheme and employs an immersed boundary method to describe the fluid–solid interaction. The simulations are conducted in a two-dimensional, horizontally periodic domain with an aspect ratio of 4, and the porosity [math] is varied from 0.7 to 1, while the solute Rayleigh number [math] ranges from [math] to [math]. Our results show that, for all explored [math], solute transport first enhances unexpectedly with decreasing [math] and then decreases when [math] is smaller than a [math]-dependent value. On the other hand, while the flow strength decreases significantly as [math] decreases at low [math], it varies weakly with decreasing [math] at high [math] and even increases counterintuitively for some porosities at moderate [math]. Detailed analysis of the salinity and velocity fields reveals that the fingered structures are blocked by the porous structure and can even be destroyed when their widths are larger than the pore scale, but become more ordered and coherent with the presence of porous media. This combination of opposing effects explains the complex porosity dependencies of solute transport and flow strength. The influence of porous structure arrangement is also examined, with stronger effects observed for smaller [math] and higher [math]. These findings have important implications for passive control of mass/solute transport in engineering applications.
► On the instability of the magnetohydrodynamic pipe flow subject to a transverse magnetic field
  17 Apr, 2023
Physics of Fluids, Volume 35, Issue 4, April 2023.
The linear stability of a fully developed liquid–metal magnetohydrodynamic pipe flow subject to a transverse magnetic field is studied numerically. Because of the lack of axial symmetry in the mean velocity profile, we need to perform a BiGlobal stability analysis. For that purpose, we develop a two-dimensional complex eigenvalue solver relying on a Chebyshev–Fourier collocation method in physical space. By performing an extensive parametric study, we show that in contrast to the Hagen–Poiseuille flow known to be linearly stable for all Reynolds numbers, the magnetohydrodynamic pipe flow with transverse magnetic field is unstable to three-dimensional disturbances at sufficiently high values of the Hartmann number and wall conductance ratio. The instability observed in this regime is attributed to the presence of velocity overspeed in the so-called Roberts layers and the corresponding inflection points in the mean velocity profile. The nature and characteristics of the most unstable modes are investigated, and we show that they vary significantly depending on the wall conductance ratio. A major result of this paper is that the global critical Reynolds number for the magnetohydrodynamic pipe flow with transverse magnetic field is Re = 45 230, and it occurs for a perfectly conducting pipe wall and the Hartmann number Ha = 19.7.
► The turbulence development at its initial stage: A scenario based on the idea of vortices decay
  17 Apr, 2023
Physics of Fluids, Volume 35, Issue 4, April 2023.
In this paper, a model of the development of a quantum turbulence in its initial stage is proposed. The origin of the turbulence in the suggested model is the decay of vortex loops with an internal structure. We consider the initial stage of this process, before an equilibrium state is established. As result of our study, the density matrix of developing turbulent flow is calculated. The quantization scheme of the classical vortex rings system is based on the approach proposed by the author earlier.
► Interstage difference and deterministic decomposition of internal unsteady flow in a five-stage centrifugal pump as turbine
  17 Apr, 2023
Physics of Fluids, Volume 35, Issue 4, April 2023.
A five-stage centrifugal pump is utilized to investigate the interstage flow characteristics of the multistage centrifugal pump as turbine (PAT). The simulation results of performance are verified by comparing with the experimental results. Owing to the distinct structural attributes, significant differences in flow occur between the first stage and the other stages of the multistage PAT. To enhance the understanding of these disparities and explore their repercussions, this study focuses on analyzing the flow within the impellers in the first and second stages by a deterministic analysis. The main conclusions are as follows: The discrepancies in the inflow conditions are the major reason for the dissimilarities in the flow of impellers between stages. The impact loss generated by the misalignment between the positive guide vane outlet angle and the impeller inlet angle leads to flow deviation between impeller passages and affects the internal flow pattern. The unsteadiness under low flow rates is mostly produced by the spatial gradient of the blade-to-blade nonuniformities, which is relevant to the relative position between blades and the positive guide vanes. At high flow rates, especially in the second-stage impeller, the pure unsteady term is the primary cause of flow unsteadiness as a result of the flow separation induced by interactions between the blades and the positive guide vanes. This study can provide some references for the practical operation and performance optimization of the multistage PATs in the future.
► Effect of gravity on phase transition for liquid–gas simulations
  17 Apr, 2023
Physics of Fluids, Volume 35, Issue 4, April 2023.
Direct simulations of phase-change and phase-ordering phenomena are becoming more common. Recently, qualitative simulations of boiling phenomena have been undertaken by a large number of research groups. One seldom discussed limitation is that large values of gravitational forcing are required to simulate the detachment and rise of bubbles formed at the bottom surface. The forces are typically so large that neglecting the effects of varying pressure in the system becomes questionable. In this paper, we examine the effect of large pressure variations induced by gravity using pseudopotential lattice Boltzmann simulations. These pressure variations lead to height dependent conditions for phase coexistence and nucleation of either gas or liquid domains. Because these effects have not previously been studied in the context of these simulation methods, we focus here on the phase stability in a one-dimensional system, rather than the additional complexity of bubble or droplet dynamics. Even in this simple case, we find that the different forms of gravitational forces employed in the literature lead to qualitatively different phenomena, leading to the conclusion that the effects of gravity induced pressure variations on phase-change phenomena should be very carefully considered when trying to advance boiling and cavitation as well as liquefaction simulations to become quantitative tools.
► Entrapment and mobilization dynamics during the flow of viscoelastic fluids in natural porous media: A micro-scale experimental investigation
  17 Apr, 2023
Physics of Fluids, Volume 35, Issue 4, April 2023.
Capillary desaturation process was investigated as a function of wetting phase rheological signatures during the injection of Newtonian and non-Newtonian fluids. Two sets of two-phase imbibition flow experiments were conducted on a water-wet sandstone core sample using brine and viscoelastic polymer solutions. During the experiments, a high-resolution micro-computed tomography scanner was employed to directly map pore-level fluid occupancies within the pore space. The results of the experiments revealed that at a given capillary number, the viscoelastic polymer was more efficient than the brine in recovering the non-wetting oil phase. At low capillary numbers, this is attributed to the improved accessibility of the viscoelastic polymer solution to the entrance of pore elements, which suppressed snap-off events and allowed more piston-like and cooperative pore-body filling events to contribute to oil displacement. For intermediate capillary numbers, the onset of elastic turbulence caused substantial desaturation, while at high capillary numbers, the superimposed effects of higher viscous and elastic forces further improved the mobilization of the trapped oil ganglia by the viscoelastic polymer. In the waterflood, however, the mobilization of oil globules was the governing recovery mechanism, and the desaturation process commenced only when the capillary number reached a threshold value. These observations were corroborated with the pore-level fluid occupancy maps produced for the brine and viscoelastic polymer solutions during the experiments. Furthermore, at the intermediate and high capillary numbers, the force balance and pore-fluid occupancies suggested different flow regimes for the non-Newtonian viscoelastic polymer. These regions are categorized in this study as elastic-capillary- and viscoelastic-dominated flow regimes, different from viscous-capillary flow conditions that are dominant during the flow of Newtonian fluids. Moreover, we have identified novel previously unreported pore-scale displacement events that take place during the flow of viscoelastic fluids in a natural heterogeneous porous medium. These events, including coalescence, fragmentation, and re-entrapment of oil ganglia, occurred before the threshold of oil mobilization was reached under the elastic-capillary-dominated flow regime. In addition, we present evidence for lubrication effects at the pore level due to the elastic properties of the polymer solution. Furthermore, a comparison of capillary desaturation curves generated for the Newtonian brine and non-Newtonian viscoelastic polymer revealed that the desaturation process was more significant for the viscoelastic polymer than for the brine. Finally, the analysis of trapped oil clusters showed that the ganglion size distribution depends on both the capillary number and the rheological properties of fluids.
► Impact of wettability on interface deformation and droplet breakup in microcapillaries
  17 Apr, 2023
Physics of Fluids, Volume 35, Issue 4, April 2023.
The objective of this research paper is to relate the influence of dynamic wetting in a liquid/liquid/solid system to the breakup of emulsion droplets in capillaries. Therefore, modeling and simulation of liquid/liquid flow through a capillary constriction have been performed with varying dynamic contact angles from highly hydrophilic to highly hydrophobic. Advanced advection schemes with geometric interface reconstruction (isoAdvector) are incorporated for high interface advection accuracy. A sharp surface tension force model is used to reduce spurious currents originating from the numerical treatment and geometric reconstruction of the surface curvature at the interface. Stress singularities from the boundary condition at the three-phase contact line are removed by applying a Navier-slip boundary condition. The simulation results illustrate the strong dependency of the wettability and the contact line and interface deformation.
► Drag increase and turbulence augmentation in two-way coupled particle-laden wall-bounded flows
  17 Apr, 2023
Physics of Fluids, Volume 35, Issue 4, April 2023.
The exact regularized point particle method is used to characterize the turbulence modulation in two-way momentum-coupled direct numerical simulations of a turbulent pipe flow. The turbulence modification is parametrized by the particle Stokes number, the mass loading, and the particle-to-fluid density ratio. The data show that in the wide region of the parameter space addressed in the present paper, the overall friction drag is either increased or unaltered by the particles with respect to the uncoupled case. In the cases where the wall friction is enhanced, the fluid velocity fluctuations show a substantial modification in the viscous sub-layer and in the buffer layer. These effects are associated with a modified turbulent momentum flux toward the wall. The particles suppress the turbulent fluctuations in the buffer region and concurrently provide extra stress in the viscous sub-layer. The sum of the turbulent stress and the extra stress is larger than the Newtonian turbulent stress, thus explaining the drag increase. The non-trivial turbulence/particles interaction turns out in a clear alteration of the near-wall flow structures. The streamwise velocity streaks lose their spatial coherence when two-way coupling effects are predominant. This is associated with a shift of the streamwise vortices toward the center of the pipe and with the concurrent presence of small-scale and relatively more intense vortical structures near the wall.
► Partial and complete wetting of thin films with dynamic contact angle
  17 Apr, 2023
Physics of Fluids, Volume 35, Issue 4, April 2023.
The wetting of thin films depends critically on the sign of the spreading coefficient [math]. We discuss the cases S < 0, S = 0, and S > 0 for transient models with contact line dissipation and find that the use of a dynamic contact angle solves problems for S > 0 that models might otherwise have. For initial data with a non-zero slope and S > 0, we show that there exists a finite time [math] at which the contact angle of the thin film goes to zero. Then, a molecular precursor emerges from the thin film and moves outward at a constant velocity.

Theoretical and Computational Fluid Dynamics top

► Fully convolutional networks for velocity-field predictions based on the wall heat flux in turbulent boundary layers
  16 Dec, 2024

Abstract

Fully-convolutional neural networks (FCN) were proven to be effective for predicting the instantaneous state of a fully-developed turbulent flow at different wall-normal locations using quantities measured at the wall. In Guastoni et al. (J Fluid Mech 928:A27, 2021. https://doi.org/10.1017/jfm.2021.812), we focused on wall-shear-stress distributions as input, which are difficult to measure in experiments. In order to overcome this limitation, we introduce a model that can take as input the heat-flux field at the wall from a passive scalar. Four different Prandtl numbers \(Pr = \nu /\alpha = (1,2,4,6)\) are considered (where \(\nu \) is the kinematic viscosity and \(\alpha \) is the thermal diffusivity of the scalar quantity). A turbulent boundary layer is simulated since accurate heat-flux measurements can be performed in experimental settings: first we train the network on aptly-modified DNS data and then we fine-tune it on the experimental data. Finally, we test our network on experimental data sampled in a water tunnel. These predictions represent the first application of transfer learning on experimental data of neural networks trained on simulations. This paves the way for the implementation of a non-intrusive sensing approach for the flow in practical applications.

► Input–output study of mode-frequency characteristics in a low-speed axial compressor
  16 Dec, 2024

Abstract

The dynamic characteristics of mode behavior in a low-speed, single-stage axial compressor are crucial for studying linear stall inception. An input–output analysis framework has been established, enabling the introduction of forcing into the compressor system and identifying the most energetic mode. Both standard and compressed input–output analysis are conducted to explore sensitive forcing positions and flow variables, with opposition control employed to suppress energy gain. As throttling progresses, a shift in high energy gain distribution from high-order to first-order circumferential modes is observed, with two distinct branches emerging across the domain of circumferential mode numbers and forcing frequencies. Compressed input–output analysis shows that limiting the forcing range to the shroud, from the inlet to the rotor blade section, is sufficient to excite the energetic mode in the current cases. Subsequently, opposition control is applied at the shroud to suppress energy amplification and modulate stall propensity within these two distinct branches. The results reveal that axial velocity control reduces energy amplification and suppresses perturbation modes related to stall inception. A comprehensive assessment of componentwise energy amplification is conducted, considering various variable forcing. The predicted results indicate that velocity perturbations are the predominant factors influencing the resolvent mode distribution pattern. Moreover, opposition control significantly impacts the critical branch associated with stall inception.

Graphical abstract

► Kinetic description of flow detachment at a smooth micro-step: the near-free-molecular regime
  10 Dec, 2024

Abstract

We study the pressure-driven steady gas flow, imposed by temperature or density gradients, over a backward-facing step in a two-dimensional microchannel. Focusing on the near-free-molecular regime of high Knudsen ( \(\textrm{Kn}\) ) numbers, the problem is analyzed asymptotically based on the Bhatnagar, Gross and Krook kinetic model, and supported by numerical Discrete Velocity Method and Direct Simulation Monte Carlo calculations. The wall conditions are formulated using the Maxwell model, superposing specular and diffuse surface conditions. The asymptotic solution contains the leading-order free-molecular description and a first-order integral representation of the near-free-molecular correction. Our results indicate that flow separation at the step can occur at arbitrarily large (yet finite) Knudsen numbers in channels with specular surfaces (i.e., having an accommodation coefficient of \(\alpha = 0\) ), driven by temperature differences between the inlet and outlet reservoirs. It is then shown that detachment is significantly suppressed by density variations between reservoirs and partially diffuse surfaces (with \(\alpha \gtrsim 0.3\) ). While the mass flow rate in a specular channel decreases with decreasing \(\mathrm {Kn\gg 1}\) in a density-driven setup (in line with the Knudsen Paradox), it increases in a temperature-driven flow. The results are obtained for arbitrary differences between the inlet and outlet reservoir equilibrium properties, and are rationalized using the linearized problem formulation.

► A systematic DNS approach to isolate wall-curvature effects in spatially developing boundary layers
    9 Dec, 2024

Abstract

A methodology to numerically assess wall-curvature effects in boundary layers is introduced. Wall curvature, which directly induces streamline curvature, is associated with several changes in boundary-layer flow. By necessity, a local radial pressure gradient emerges to balance mean flow turning. Moreover, a streamwise (wall-tangential) pressure gradient can appear for configurations with non-constant wall curvature or a particular freestream condition; zero pressure gradient is a special case. In laminar concave flow, the Görtler instability and the associated Taylor-Görtler vortices destabilize the flow and promote laminar-turbulent transition, whereas in the fully turbulent regime, unsteady coherent structures formed by the centrifugal instability mechanism dramatically redistribute turbulent shear stress. One difficulty of assessing centrifugal effects on boundary layers is that they often appear simultaneously with other phenomena, such as a streamwise pressure gradient, making their individual evaluation often ambiguous. For numerical studies of transitional and turbulent boundary layers, it is therefore beneficial to understand the interactive nature of such coupled effects for generic configurations. A methodology to do so is presented, and is verified using the case of a subsonic, compressible turbulent boundary layer. Four direct numerical simulations have been computed, forming a \(2{\times }2\) matrix of turbulent boundary-layer states; namely with and without concave wall curvature, each having a zero and a non-zero streamwise-pressure-gradient realization. The setup and accompanying procedures to determine appropriate boundary conditions are discussed, and the methodology is evaluated through analysis of the mean flow fields. Differences in mean flow properties such as wall shear stress and boundary-layer thickness due to either streamwise pressure gradient or wall curvature are shown to be remarkably independent of one another.

► Loosely coupled under-resolved LES/RANS simulation augmented by sparse near-wall measurement
    8 Dec, 2024

Abstract

We investigate scenarios, where only sparse wall shear stress measurements are available, while accurate wall shear stress and velocity profiles are sought. Applying discrete adjoint-based data assimilation, with only near-wall measurements, accurate wall shear stress profiles are achieved at the expense of unrealistic velocity profiles. We therefore add and employ internal reference data generated by performing a relatively cheap hybrid simulation. We modified the dual-mesh hybrid LES/RANS framework recently proposed by Xiao and Jenny (J Comput Phys 231(4):1848–1865, 2012, https://doi.org/10.1016/j.jcp.2011.11.009) by loosely coupling under-resolved LES in the interior with steady RANS near the walls. The framework was developed in OpenFOAM and tested for flow over periodic hills with Re = 10,595. Results show that the devised framework outperforms conventional dual-mesh hybrid LES/RANS and standalone sparse wall-data assimilated RANS models. Graphical abstract Horizontal mean velocity component \(U_{1}\) (top plot) and wall shear stress (friction coefficient \(C_{f}\) ) profiles at the lower wall (bottom plot) obtained with S-RANS and assimilation of sparse wall shear stress data

Graphical abstract

► Exact parallelized dynamic mode decomposition with Hankel matrix for large-scale flow data
    7 Dec, 2024

Abstract

An exact parallel algorithm of dynamic mode decomposition (DMD) with Hankel matrices for large-scale flow data is proposed. The proposed algorithm enables the DMD and the Hankel DMD for large-scale data obtained by high-fidelity flow simulations, such as large-eddy simulations or direct numerical simulations using more than a billion grid points, on parallel computations without any approximations. The proposed algorithm completes the computations of the DMD by utilizing block matrices of \(X^TX\in \mathbb {R}^{k\times k}\) (where \(X\in \mathbb {R}^{n\times k}\) is a large data matrix obtained by high-fidelity simulations, the number of snapshot data is \(n > rsim 10^9\) , and the number of snapshots is \(k\lesssim O(10^3)\) ) without any approximations: for example, the singular value decomposition of X is replaced by the eigenvalue decomposition of \(X^TX\) . Then, the computation of \(X^TX\) is parallelized by utilizing the domain decomposition often used in flow simulations, which reduces the memory consumption for each parallel process and wall-clock time in the DMD by a factor approximately equal to the number of parallel processes. The parallel computation with communication is performed only for \(X^TX\) , allowing for high parallel efficiency under massively parallel computations. Furthermore, the proposed exact parallel algorithm is extended to the Hankel DMD without any additional parallel computations, realizing the Hankel DMD of large-scale data collected by over a billion grid points with comparable cost and memory to the DMD without Hankel matrices. Moreover, this study shows that the Hankel DMD, which has been employed to enrich information and augment rank, is advantageous for large-scale high-dimensional data collected by high-fidelity simulations in data reconstruction and predictions of future states (while prior studies have reported such advantages for low-dimensional data). Several numerical experiments using large-scale data, including laminar and turbulent flows around a cylinder and transonic buffeting flow around a full aircraft configuration, demonstrate that (i) the proposed exact parallel algorithm reproduces the existing non-parallelized Hankel DMD, (ii) the Hankel DMD for large-scale data consisting of over a billion grid points is feasible by using the proposed exact parallel algorithm with high parallel efficiency on more than 6 thousand CPU cores, and (iii) the Hankel DMD has advantages for high-dimensional data such as \(n > rsim 10^9\) .

Graphical abstract

► Shape diagram determination of a multiphase system in stratified configuration by CFD
    7 Dec, 2024

Abstract

Dynamics of a multiphase flow phenomenon involving water (at top), molten metal (at bottom), and vapor (between them), was numerically studied using volume of fluid method. Multiphase flow systems like this are present in a wide range of industrial applications and natural phenomena and are extensively investigated because of their potential to produce energy. This work pays special attention to the interface shape because of its influence on heat transfer rate. An approach, new for systems larger than drop scale, which consists in the construction of an interface shape diagram based on Reynolds (Re) and Bond (Bo) dimensionless numbers is proposed. The presented model demonstrated good capability to discern the governing forces such as viscous, inertial, and surface tension. The most favorable interface shapes for efficient premixing of phases involved were identified. The premixing significance lies in its determining role in steam explosion generation. Moreover, the effect of density ratio and triggering pressure is examined. In addition, Kelvin–Helmholtz and Rayleigh–Taylor fragmentation mechanisms were observed, and their preponderance was analyzed. The results obtained were validated with previous experimental data available in the literature finding good agreement. This proposal aims to provide useful information to enhance our understanding of this phenomenon from a fundamental perspective, applicable to further numerical and experimental studies in different research areas.

Graphical abstract

► Simulation of the unsteady vortical flow of freely falling plates
    1 Dec, 2024

Abstract

An inviscid vortex shedding model is numerically extended to simulate falling flat plates. The body and vortices separated from the edge of the body are described by vortex sheets. The vortex shedding model has computational limitations when the angle of incidence is small and the free vortex sheet approaches the body closely. These problems are overcome by using numerical procedures such as a method for a near-singular integral and the suppression of vortex shedding at the plate edge. The model is applied to a falling plate of flow regimes of various Froude numbers. For \(\text {Fr}=0.5\) , the plate develops large-scale side-to-side oscillations. In the case of \(\text {Fr}=1\) , the plate motion is a combination of side-to-side oscillations and tumbling and is identified as a chaotic type. For \(\text {Fr}=1.5\) , the plate develops to autorotating motion. Comparisons with previous experimental results show good agreement for the falling pattern. The dependence of change in the vortex structure on the Froude number and its relation with the plate motion is also examined.

Graphical abstract

► Analysis of the wall heat flux of the hypersonic shock wave/boundary layer interaction using a novel decomposition formula
    1 Dec, 2024

Abstract

The generation mechanism of wall heat flux is one of the fundamental problems in supersonic/hypersonic turbulent boundary layers. A novel heat decomposition formula under the curvilinear coordinate was proposed in this paper. The new formula has wider application scope and can be applied in the configurations with grid deformed. The new formula analyzes the wall heat flux of an interaction between a shock wave and a turbulent boundary layer over a compression corner. The results indicated good performance of the formula in the complex interaction region. The contributions of different energy transport processes were obtained. While the processes by the mean profiles such as molecular stresses and heat conduction, can be ignored, the contributions by the turbulent fluctuations, such as Reynolds stresses and turbulent transfer of heat flux, were greatly increased. Additionally, the pressure work is another factor that affects the wall heat flux. The pressure work in the wall-normal direction is concentrated close to the reattachment point, while the pressure work in the streamwise direction acts primarily in the shear layer and the reattachment point.

► Aerodynamic and aeroacoustic performance of a pitching foil with trailing edge serrations at a high Reynolds number
    1 Dec, 2024

Abstract

The aerodynamic and aeroacoustic performance of a low-aspect-ratio ( \(\hbox {AR}=0.2\) ) pitching foil during dynamic stall are investigated numerically with focus on the effects of trailing edge serrations. A hybrid method coupling an immersed boundary method for incompressible flows with the Ffowcs Williams–Hawkings acoustic analogy is employed. Large eddy simulation and turbulent boundary layer equation wall model are also employed to capture the turbulent effects. A modified NACA0012 foil with a rectangular trailing edge flap attached to the trailing edge (baseline case) undergoing pitching motion is considered. Trailing edge serrations are applied to the trailing edge flap and their effects on the aerodynamic and aeroacoustic performance of the oscillating airfoil are considered by varying the wave amplitude ( \(2h^*= 0.05, 0.1\) , and 0.2) at a Reynolds number of 100,000 and a Mach number of 0.05. It is found that the reduction of the sound pressure level at the dimensionless frequency band \(St_{b}\in [1.25,4]\) can be over 4 dB with the presence of the trailing edge serrations ( \(2h^*=0.1\) ), while the aerodynamic performance and its fluctuations are not significantly altered except a reduction around 10% in the negative moment coefficient and it fluctuations. This is due to the reduction of the average spanwise coherence function and the average surface pressure with respect to that of the baseline case, suggesting the reduction of the spanwise coherence and the noise source may result in the noise reduction. Analysis of the topology of the near wake coherent structure for \(2h^*=0.1\) reveals that the alignment of the streamwise-oriented vortex with the serration edge may reduce the surface pressure fluctuation.

Graphical abstract


return

Layout Settings:

Entries per feed:
Display dates:
Width of titles:
Width of content: