From CFD-Wiki
!Sample program for solving Smith-Hutton Test using different schemes
!of covective terms approximation - Intial data input modul
!Copyright (C) 2005 Michail Kirichkov
!This program is free software; you can redistribute it and/or
!modify it under the terms of the GNU General Public License
!as published by the Free Software Foundation; either version 2
!of the License, or (at your option) any later version.
!This program is distributed in the hope that it will be useful,
!but WITHOUT ANY WARRANTY; without even the implied warranty of
!MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
!GNU General Public License for more details.
!You should have received a copy of the GNU General Public License
!along with this program; if not, write to the Free Software
!Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
!***************************************************************************
Subroutine Init_all
include 'icomm_1.f90'
DO 2 I=1,NXmaxP
DO 2 J=1,NYmaxP
F(i,j,1) = 2. * Yp(i,j) * (1. - Xp(i,j)**2.)
F(i,j,2) = (-1.) * 2. * Xp(i,j) * (1. - Yp(i,j)**2.)
! F(i,j,1) = 1.
! F(i,j,2) = -1.
2 continue
DO 3 I=1,NXmaxP
DO 3 J=1,NYmaxP
Gam(i,j) = 1. /1000000.
Ro(i,j) = 1.
3 continue
! F( 1,:,5) = 0. ! x = -1
! F(NXmaxP,:,5) = 0. ! x = 1
! F(:, 1,5) = 0. ! y = 0
! F(:,NYmaxP,5) = 0. ! y = 1
!------------------------------------------------
!------------------------------------------------
F(:,:,5)=0.00001
alfff = 20.
F( 1,:,5) = 1. - tanh(alfff) ! x = -1 0<y<1
F(NXmaxP,:,5) = 1. - tanh(alfff) ! x = -1 0<y<1
F(:,NYmaxP,5) = 1. - tanh(alfff) ! -1 < x < 1 y = 1
! DO 3 I=1,NXmaxP
! DO 3 J=1,NYmaxP
! 3 continue
!------------------------------------------------
open(54, file='inlet_prof.txt')
DO 5 I=1,NXmaxP
If ( Xp(i,1)<0.) then
F(i,1,5) = 1. + tanh(alfff * ( 2.* Xp(i,1) + 1.) )
write(54,*) Xp(i,1),F(i,1,5)
end if
5 continue
close(54)
Return
End