SST k-omega model
From CFD-Wiki
Line 1: | Line 1: | ||
{{Turbulence modeling}} | {{Turbulence modeling}} | ||
- | The SST k- | + | The SST k-ω turbulence model [Menter 1993] is a [[Two equation turbulence models|two-equation]] [[Eddy viscosity|eddy-viscosity]] model which has become very popular. The SST formulation combines the best of two worlds. The use of a k-ω formulation in the inner parts of the boundary layer makes the model directly usable all the way down to the wall through the visous sub-layer, hence the SST k-ω model can be used as a [[Low-Re turbulence model]] without any extra damping functions. The SST formulation also switches to a k-ε behaviour in the free-stream and thereby avoids the common k-ω problem that the model is too sensitive to the [[Turbulence free-stream boundary conditions|inlet free-stream turbulence properties]]. Authors who use the SST k-ω model often merit it for its good behaviour in adverse pressure gradients and separating flow. The SST k-ω model does produce a bit too large turbulence levels in regions with large normal strain, like stagnation regions and regions with strong acceleration. This tendency is much less pronounced than with a normal k-ε model though. |
==Kinematic Eddy Viscosity == | ==Kinematic Eddy Viscosity == | ||
Line 62: | Line 62: | ||
== References == | == References == | ||
- | #{{reference-paper|author=Menter, F.R. |year=1994|title=Two- | + | #{{reference-paper|author=Menter, F. R.|year=1993|title=Zonal Two Equation k-ω Turbulence Models for Aerodynamic Flows|rest=AIAA Paper 93-2906}} |
+ | #{{reference-paper|author=Menter, F. R. |year=1994|title=Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications|rest=AIAA Journal, vol. 32, pp. 269-289}} | ||
[[Category:Turbulence models]] | [[Category:Turbulence models]] |
Revision as of 10:04, 31 May 2007
The SST k-ω turbulence model [Menter 1993] is a two-equation eddy-viscosity model which has become very popular. The SST formulation combines the best of two worlds. The use of a k-ω formulation in the inner parts of the boundary layer makes the model directly usable all the way down to the wall through the visous sub-layer, hence the SST k-ω model can be used as a Low-Re turbulence model without any extra damping functions. The SST formulation also switches to a k-ε behaviour in the free-stream and thereby avoids the common k-ω problem that the model is too sensitive to the inlet free-stream turbulence properties. Authors who use the SST k-ω model often merit it for its good behaviour in adverse pressure gradients and separating flow. The SST k-ω model does produce a bit too large turbulence levels in regions with large normal strain, like stagnation regions and regions with strong acceleration. This tendency is much less pronounced than with a normal k-ε model though.
Contents |
Kinematic Eddy Viscosity
Turbulence Kinetic Energy
Specific Dissipation Rate
Closure Coefficients and Auxilary Relations
References
- Menter, F. R. (1993), "Zonal Two Equation k-ω Turbulence Models for Aerodynamic Flows", AIAA Paper 93-2906.
- Menter, F. R. (1994), "Two-Equation Eddy-Viscosity Turbulence Models for Engineering Applications", AIAA Journal, vol. 32, pp. 269-289.