CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Wiki > Wilcox's k-omega model

Wilcox's k-omega model

From CFD-Wiki

(Difference between revisions)
Jump to: navigation, search
m (References)
 
(16 intermediate revisions not shown)
Line 1: Line 1:
 +
{{Turbulence modeling}}
==Kinematic Eddy Viscosity ==
==Kinematic Eddy Viscosity ==
:<math>
:<math>
Line 15: Line 16:
==Closure Coefficients and Auxilary Relations==
==Closure Coefficients and Auxilary Relations==
 +
:<math>
:<math>
-
\alpha  = {{13} \over {25}}   
+
\alpha  = {{5} \over {9}}   
-
</math>
+
-
:<math>
+
-
\beta  = \beta _0 f_\beta   
+
-
</math>
+
-
:<math>
+
-
\beta ^*  = \beta _0^* f_{\beta ^* } 
+
-
</math>
+
-
:<math>
+
-
\sigma  = {1 \over 2} 
+
-
</math>
+
-
:<math>
+
-
\sigma ^*  = {1 \over 2} 
+
-
</math>
+
-
:<math>
+
-
\beta _0  = {9 \over {125}}
+
</math>
</math>
:<math>
:<math>
-
f_\beta   = {{1 + 70\chi _\omega  } \over {1 + 80\chi _\omega  }}
+
\beta = {{3} \over {40}}  
</math>
</math>
:<math>
:<math>
-
\chi _\omega  = \left| {{{\Omega _{ij} \Omega _{jk} S_{ki} } \over {\left( {\beta _0^* \omega } \right)^3 }}} \right|
+
\beta^*  = {9 \over {100}}
</math>
</math>
:<math>
:<math>
-
\beta _0^* = {9 \over {100}}
+
\sigma = {1 \over 2}
</math>
</math>
:<math>
:<math>
-
f_{\beta ^* } = \left\{
+
\sigma ^*  = {1 \over 2}   
-
 
+
-
\begin{matrix}
+
-
  {1,} & {\chi _k  \le 0}  \\
+
-
  {{{1 + 680\chi _k^2 } \over {1 + 80\chi _k^2 }},} & {\chi _k > 0}  \\
+
-
\end{matrix}
+
-
 
+
-
 
+
-
  \right.
+
-
</math>
+
-
 
+
-
:<math>
+
-
\chi _k  \equiv {1 \over {\omega ^3 }}{{\partial k} \over {\partial x_j }}{{\partial \omega } \over {\partial x_j }}
+
</math>
</math>
Line 66: Line 41:
</math>
</math>
-
:<math>
+
== References ==
-
l = {{k^{{1 \over 2}} } \over \omega }
+
-
</math>
+
 +
#{{reference-paper|author=Wilcox, D.C. |year=1988|title=Re-assessment of the scale-determining equation for advanced turbulence models|rest=AIAA Journal, vol. 26, no. 11,  pp. 1299-1310}}
-
== References ==
+
[[Category:Turbulence models]]
-
 
+
-
#{{reference-book|author=Wilcox, D.C. |year=2004|title=Turbulence Modeling for CFD|rest=ISBN 1-928729-10-X, 2nd Ed., DCW Industries, Inc.}}
+

Latest revision as of 16:52, 8 March 2011

Turbulence modeling
Turbulence
RANS-based turbulence models
  1. Linear eddy viscosity models
    1. Algebraic models
      1. Cebeci-Smith model
      2. Baldwin-Lomax model
      3. Johnson-King model
      4. A roughness-dependent model
    2. One equation models
      1. Prandtl's one-equation model
      2. Baldwin-Barth model
      3. Spalart-Allmaras model
    3. Two equation models
      1. k-epsilon models
        1. Standard k-epsilon model
        2. Realisable k-epsilon model
        3. RNG k-epsilon model
        4. Near-wall treatment
      2. k-omega models
        1. Wilcox's k-omega model
        2. Wilcox's modified k-omega model
        3. SST k-omega model
        4. Near-wall treatment
      3. Realisability issues
        1. Kato-Launder modification
        2. Durbin's realizability constraint
        3. Yap correction
        4. Realisability and Schwarz' inequality
  2. Nonlinear eddy viscosity models
    1. Explicit nonlinear constitutive relation
      1. Cubic k-epsilon
      2. EARSM
    2. v2-f models
      1. \overline{\upsilon^2}-f model
      2. \zeta-f model
  3. Reynolds stress model (RSM)
Large eddy simulation (LES)
  1. Smagorinsky-Lilly model
  2. Dynamic subgrid-scale model
  3. RNG-LES model
  4. Wall-adapting local eddy-viscosity (WALE) model
  5. Kinetic energy subgrid-scale model
  6. Near-wall treatment for LES models
Detached eddy simulation (DES)
Direct numerical simulation (DNS)
Turbulence near-wall modeling
Turbulence free-stream boundary conditions
  1. Turbulence intensity
  2. Turbulence length scale

Contents

Kinematic Eddy Viscosity


\nu _T  = {k \over \omega }

Turbulence Kinetic Energy


{{\partial k} \over {\partial t}} + U_j {{\partial k} \over {\partial x_j }} = \tau _{ij} {{\partial U_i } \over {\partial x_j }} - \beta ^* k\omega  + {\partial  \over {\partial x_j }}\left[ {\left( {\nu  + \sigma ^* \nu _T } \right){{\partial k} \over {\partial x_j }}} \right]

Specific Dissipation Rate


{{\partial \omega } \over {\partial t}} + U_j {{\partial \omega } \over {\partial x_j }} = \alpha {\omega  \over k}\tau _{ij} {{\partial U_i } \over {\partial x_j }} - \beta \omega ^2  + {\partial  \over {\partial x_j }}\left[ {\left( {\nu  + \sigma \nu _T } \right){{\partial \omega } \over {\partial x_j }}} \right]

Closure Coefficients and Auxilary Relations


\alpha  = {{5} \over {9}}

 \beta  = {{3} \over {40}}

\beta^*  = {9 \over {100}}

\sigma  = {1 \over 2}

\sigma ^*  = {1 \over 2}

\varepsilon  = \beta ^* \omega k

References

  1. Wilcox, D.C. (1988), "Re-assessment of the scale-determining equation for advanced turbulence models", AIAA Journal, vol. 26, no. 11, pp. 1299-1310.
My wiki