From CFD-Wiki
function [Cm,RowNdx,ColNdx,Rcm,RcNdx]=CMatW(eu,Xe,Elcon,nn2nft,Vdof)
%CMatW - Returns the element convection matrix for the Hermite basis
% functions with 3, 4, or 6 degrees-of-freedom and defined on a
% 3-node (triangle) or 4-node (quadrilateral) element by the class
% instance es using Gauss quadrature on the reference element.
% The columns of the array Vdof must contain the 3, 4, or 6 nodal
% degree-of-freedom vectors in the proper nodal order.
% The degrees of freedom in Vdof are the stream function, the two components
% u and v of the solenoidal velocity vector, and possibly the second
% derivatives Pxx, Pxy, Pyy of the stream function.
%
% Usage:
% [CM,Rndx,Cndx] = CMatW(es,Xe,Elcon,nn2nft,Vdof)
% [CM,Rndx,Cndx,Rcm,RcNdx] = CMatW(es,Xe,Elcon,nn2nft,Vdof)
% eu - handle for basis function definitions
% Xe(1,:) - x-coordinates of corner nodes of element.
% Xe(2,:) - y-coordinates of corner nodes of element.
% Elcon - this element connectivity matrix
% nn2nft - global number and type of DOF at each node
% Vdof - (ndfxnnd) array of stream function, velocity components, and
% perhaps second stream function derivatives to specify the velocity
% over the element.
%
% Indirectly may use (handle passed by eu):
% GQuad2 - function providing 2D rectangle quadrature rules.
% TQuad2 - function providing 2D triangle quadrature rules.
%
% Jonas Holdeman, August 2007, revised March 2013
% ----------------- Constants and fixed data -------------------------
nnodes = eu.nnodes; % number of nodes per element (4);
nndofs = eu.nndofs; % nndofs = number of dofs per node, (3|6);
nedofs = nnodes*nndofs;
nn = eu.nn; % defines local nodal order, [-1 -1; 1 -1; 1 1; -1 1]
% ------------------------------------------------------------------------
persistent QQCM4;
if isempty(QQCM4)
QRorder = 3*eu.mxpowr-1; % =9
[QQCM4.xa, QQCM4.ya, QQCM4.wt, QQCM4.nq] = eu.hQuad(QRorder);
end % if isempty...
xa = QQCM4.xa; ya = QQCM4.ya; wt = QQCM4.wt; Nq = QQCM4.nq;
% ------------------------------------------------------------------------
persistent ZZ_Sc; persistent ZZ_SXc; persistent ZZ_SYc;
if (isempty(ZZ_Sc)||size(ZZ_Sc,2)~=Nq)
% Evaluate and save/cache the set of shape functions at quadrature pts.
ZZ_Sc=cell(nnodes,Nq); ZZ_SXc=cell(nnodes,Nq); ZZ_SYc=cell(nnodes,Nq);
for k=1:Nq
for m=1:nnodes
ZZ_Sc{m,k}= eu.S(nn(m,:),xa(k),ya(k));
[ZZ_SXc{m,k},ZZ_SYc{m,k}]=eu.DS(nn(m,:),xa(k),ya(k));
end
end
end % if isempty...
% ----------------------- End fixed data ---------------------------------
if (nargout<4), ItrType=0; else ItrType=1; end % ItrType=1 for Newton iter
affine = eu.isaffine(Xe); % affine?
%affine = (sum(abs(Xe(:,1)-Xe(:,2)+Xe(:,3)-Xe(:,4)))<4*eps); % affine?
Ti=cell(nnodes);
% Jt=[x_q, x_r; y_q, y_r];
if affine % (J constant)
Jt=Xe*eu.Gm(nn(:,:),eu.cntr(1),eu.cntr(2));
JtiD=[Jt(2,2),-Jt(1,2); -Jt(2,1),Jt(1,1)]; % det(J)*inv(J)
if nndofs==3
TT=blkdiag(1,JtiD);
elseif nndofs==4
TT=blkdiag(1,JtiD,Jt(1,1)*Jt(2,2)+Jt(1,2)*Jt(2,1));
else
T2=[Jt(1,1)^2, 2*Jt(1,1)*Jt(1,2), Jt(1,2)^2; ... % alt
Jt(1,1)*Jt(2,1), Jt(1,1)*Jt(2,2)+Jt(1,2)*Jt(2,1), Jt(1,2)*Jt(2,2); ...
Jt(2,1)^2, 2*Jt(2,1)*Jt(2,2), Jt(2,2)^2];
TT=blkdiag(1,JtiD,T2);
Bxy=Xe*eu.DGm(nn(:,:),0,0); % Second cross derivatives
TT(5,2)= Bxy(2);
TT(5,3)=-Bxy(1);
end % nndofs...
for m=1:nnodes, Ti{m}=TT; end
Det=Jt(1,1)*Jt(2,2)-Jt(1,2)*Jt(2,1); % Determinant of Jt & J
Jtd=Jt/Det;
Ji=[Jt(2,2),-Jt(2,1); -Jt(1,2),Jt(1,1)]/Det;
else
for m=1:nnodes
Jt=Xe*eu.Gm(nn(:,:),nn(m,1),nn(m,2));
JtiD=[Jt(2,2),-Jt(1,2); -Jt(2,1),Jt(1,1)]; % det(J)*inv(J)
if nndofs==3
TT=blkdiag(1,JtiD);
elseif nndofs==4
TT=blkdiag(1,JtiD,Jt(1,1)*Jt(2,2)+Jt(1,2)*Jt(2,1));
else
T2=[Jt(1,1)^2, 2*Jt(1,1)*Jt(1,2), Jt(1,2)^2; ... % alt
Jt(1,1)*Jt(2,1), Jt(1,1)*Jt(2,2)+Jt(1,2)*Jt(2,1),Jt(1,2)*Jt(2,2);...
Jt(2,1)^2, 2*Jt(2,1)*Jt(2,2), Jt(2,2)^2];
TT=blkdiag(1,JtiD,T2);
Bxy=Xe*eu.DGm(nn(:,:),nn(m,1),nn(m,2)); % Second cross derivatives
TT(5,2)= Bxy(2);
TT(5,3)=-Bxy(1);
end % nndofs...
Ti{m}=TT;
end % for m=...
end % affine
% Allocate arrays
Cm=zeros(nedofs,nedofs); Rcm=zeros(nedofs,1);
S=zeros(2,nedofs); Sx=zeros(2,nedofs); Sy=zeros(2,nedofs);
ND=1:nndofs;
% Begin loop over Gauss-Legendre quadrature points.
for k=1:Nq
if ~affine
Jt=Xe*eu.Gm(nn(:,:),xa(k),ya(k)); % transpose of Jacobian at (xa,ya)
Det=Jt(1,1)*Jt(2,2)-Jt(1,2)*Jt(2,1); % Determinant of Jt & J
Jtd=Jt/Det;
Ji=[Jt(2,2),-Jt(2,1); -Jt(1,2),Jt(1,1)]/Det;
end
% Initialize functions and derivatives at the quadrature point (xa,ya).
for m=1:nnodes
mm=nndofs*(m-1);
S(:,mm+ND)=Jtd*ZZ_Sc{m,k}*Ti{m};
Sx(:,mm+ND)=Jtd*(Ji(1,1)*ZZ_SXc{m,k}+Ji(1,2)*ZZ_SYc{m,k})*Ti{m};
Sy(:,mm+ND)=Jtd*(Ji(2,1)*ZZ_SXc{m,k}+Ji(2,2)*ZZ_SYc{m,k})*Ti{m};
end % loop m
% Compute the fluid velocity at the quadrature point.
U = S*Vdof(:);
% Submatrix ordered by psi,u,v
Cm = Cm + S'*(U(1)*Sx+U(2)*Sy)*(wt(k)*Det);
if (ItrType~=0) % iteration type is Newton
Ux=Sx*Vdof(:);
Uy=Sy*Vdof(:);
Cm = Cm + S'*(Ux*S(1,:)+Uy*S(2,:))*(wt(k)*Det);
Rcm=Rcm + S'*(U(1)*Ux+U(2)*Uy)*(wt(k)*Det);
end % Cm & Rcm for Newton iteration
end % end loop k over quadrature points
gf=zeros(nedofs,1);
m=0;
for n=1:nnodes % Loop over element nodes
gf(m+ND)=(nn2nft(Elcon(n),1)-1)+ND; % Get global freedoms
m=m+nndofs;
end
RowNdx=repmat(gf,1,nedofs); % Row indices
ColNdx=RowNdx'; % Col indices
Cm = reshape(Cm,nedofs*nedofs,1);
RowNdx=reshape(RowNdx,nedofs*nedofs,1);
ColNdx=reshape(ColNdx,nedofs*nedofs,1);
if(ItrType==0), Rcm=[]; RcNdx=[]; else RcNdx=gf; end
return;