From CFD-Wiki
Introduction
The Cebeci-Smith [Cebeci and Smith (1967)] is a two-layer algebraic 0-equation model which gives the eddy viscosity, , as a function of the local boundary layer velocity profile. The model is suitable for high-speed flows with thin attached boundary-layers, typically present in aerospace applications. Like the Baldwin-Lomax model, this model is not suitable for cases with large separated regions and significant curvature/rotation effects (see below). Unlike the Baldwin-Lomax model, this model requires the determination of of a boundary layer edge.
Equations
| (1) |
where is the smallest distance from the surface where is equal to :
| (2) |
The inner region is given by the Prandtl - Van Driest formula:
| (3) |
where
| (4) |
| (5) |
| (5) |
| (6) |
The outer region is given by:
| (7) |
where , is the velocity thickness given by
| (8) |
and is the Klebanoff intermittency function given by
| (10) |
Model variants
Performance, applicability and limitations
Implementation issues
References
- Smith, A.M.O. and Cebeci, T. Numerical solution of the turbulent boundary layer equations, Douglas aircraft division report DAC 33735.
- Wilcox, D.C. (1998), Turbulence Modeling for CFD, ISBN 1-928729-10-X, 2nd Ed., DCW Industries, Inc..