CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Wiki > Fromm based Schemes - structured grids

Fromm based Schemes - structured grids

From CFD-Wiki

Revision as of 20:18, 14 October 2005 by Michail (Talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

Contents

Fromm scheme

J.E.Fromm

A method for reducing dispersion in convective difference schemes

J. Comp. Phys., Vol. 3, p.176, (1968)

MUSCL - Monotonic Upwind Scheme for Conservation Laws

Lien F.S. and Leschziner M.A. , Proc. 5th Int. IAHR Symp. on Refind Flow Modelling and Turbulence Measurements, Paris, Sept. 1993

Based on Fromm's scheme

NM convectionschemes struct grids Schemes MUSCL Probe 01.jpg


Normalized variables - uniform grids

 
\hat{\phi_{f}}=  
\begin{cases}
2 \hat{\phi_{C}}                  &  0          \leq \hat{\phi_{C}} \leq \frac{1}{4} \\ 
\frac{1}{4} + \hat{\phi_{C}}      & \frac{1}{4} \leq \hat{\phi_{C}} \leq \frac{3}{4} \\
1                                 & \frac{3}{4} \leq \hat{\phi_{C}} \leq 1 \\    
\widehat{\phi_{C}} & \widehat{\phi_{C}} \triangleleft 0 \ , \ \widehat{\phi_{C}} \triangleright 1
\end{cases}
(2)

Normalized variables - non-uniform grids

 
\hat{\phi_{f}}=  
\begin{cases}
2 \hat{\phi_{C}}              &  0        \leq \hat{\phi_{C}} \leq x_{Q}/2   \\ 
a_{f} + b_{f} \hat{\phi_{C}}  & x_{Q}/2   \leq \hat{\phi_{C}} \leq 3 x_{Q}/2 \\
1                             & 3 x_{Q}/2 \leq \hat{\phi_{C}} \leq 1         \\    
\hat{\phi_{C}} & \hat{\phi_{C}} \triangleleft 0 \ , \ \hat{\phi_{C}} \triangleright 1
\end{cases}
(2)

where


a_{f}=  \left( 3 x_{Q} - 2 \right)/2
(2)
 
b_{f}= \left( 1 - x_{Q} \right) / x_{Q}
(2)

van Leer limiter

van Albada

Bounded Fromm

G.D. Van Albada, B.Van Leer, W.W.Roberts

A comparative study of computational methods in cosmic gas dynamics

Astron. Astrophysics, Vol. 108, p.76, 1982

OSPRE

bounded Fromm

Waterson [1995]

N.P.Waterson, H.Deconinck.

A unified approach to the design and application of bounded high-order convection schemes

In C. Taylor and P.Durbetaki, editors, Proc. Ninth Int. Conf. on Numer. Method. Laminar and turbulent Flow, pages 203-214, Pineride Press, Swansea, 1995

My wiki