CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Wiki > Linear Schemes - structured grids

Linear Schemes - structured grids

From CFD-Wiki

Revision as of 20:06, 14 October 2005 by Michail (Talk | contribs)
(diff) ← Older revision | Latest revision (diff) | Newer revision → (diff)
Jump to: navigation, search

Contents

Linear

SOU - Second Order Upwind (also LUDS or UDS-2)

S.P.Vanka ({{{year}}}), "Second-order upwind differencing ina recirculating flow", AIAA J., 25, 1435-1441.

R.F.Warming and R.M. Beam (1976), "Upwind second order difference schemes and applications in aerodynamics flows", AIAA J. 14 (1976) 1241-1249.

Skew - Upwind

G.D.Raithby , Skew upstream differencing schemes for problems involving fluid flow, Computational Methods Applied Mech. Engineering, 9, 153-164 (1976)

QUICK - Quadratic Upwind Interpolation for Convective Kinematics (also UDS-3 or QUDS)

B.P.Leonard, A stable and accurate modelling procedure based on quadratic interpolation, Comput. Methods Appl. Mech. Engrg. 19 (1979) 58-98

Usual variables

 
	f_{w}= \frac{3}{8}f_{P}+ \frac{3}{4}f_{W} - \frac{1}{8}f_{WW}
(2)


 
	\phi_{w}= \frac{3}{8}\phi_{P}+ \frac{3}{4}\phi_{W} - \frac{1}{8}\phi_{WW}
(2)
 
	\phi_{f}= \frac{3}{8}\phi_{D}+ \frac{3}{4}\phi_{C} - \frac{1}{8}\phi_{U}
(2)


Normalised variables (uniform grid)


 
	\hat{\phi_{f}}= \frac{3}{8} + \frac{3}{4}\hat{\phi_{C}}
(2)


Normalised variables (non-uniform grid)


 
\begin{matrix}
\hat{f_{w}} & =  \left\{ \left( 1 + C_{1} \right) \left( 1 - C_{2} \right)\hat{f_{W}} + C_{2} \left[ 1 - \frac{C_{1} \left( 1 - C_{2} \right) }{ C_{1} + C_{2} } \right]  \right\} U^{+}_{w} + \\
+ &	\left\{ C_{2} \left( 1 + C_{3} \right) \hat{f_{P}} + \left( 1 - C_{2} \right) \left[ 1 - \frac{C_{2} C_{3} }{ 1- C_{2} + C_{3} } \right]  \right\} U^{-}_{w}
\end{matrix}
(2)
 
\begin{matrix}
\hat{\phi_{w}} & =  \left\{ \left( 1 + C_{1} \right) \left( 1 - C_{2} \right)\hat{\phi_{W}} + C_{2} \left[ 1 - \frac{C_{1} \left( 1 - C_{2} \right) }{ C_{1} + C_{2} } \right]  \right\} U^{+}_{w} + \\
+ &	\left\{ C_{2} \left( 1 + C_{3} \right) \hat{\phi_{P}} + \left( 1 - C_{2} \right) \left[ 1 - \frac{C_{2} C_{3} }{ 1- C_{2} + C_{3} } \right]  \right\} U^{-}_{w}
\end{matrix}
(2)
 
\begin{matrix}
\hat{\phi_{f}} & =  \left\{ \left( 1 + C_{1} \right) \left( 1 - C_{2} \right)\hat{\phi_{C}} + C_{2} \left[ 1 - \frac{C_{1} \left( 1 - C_{2} \right) }{ C_{1} + C_{2} } \right]  \right\} U^{+}_{f} + \\
+ &	\left\{ C_{2} \left( 1 + C_{3} \right) \hat{\phi_{D}} + \left( 1 - C_{2} \right) \left[ 1 - \frac{C_{2} C_{3} }{ 1- C_{2} + C_{3} } \right]  \right\} U^{-}_{f}
\end{matrix}
(2)

LUS - Linear Upwind Scheme

H.C.Price, R.S. Varga and J.E.Warren , Application of oscillation matrices to diffusion-convection equations, Journal Math. and Phys., Vol. 45, p.301, (1966)

Fromm - Fromm's Upwind Scheme

NM convectionschemes struct grids Schemes FROMM Probe 01.jpg

CUDS - Cubic Upwind Difference Scheme (also CUS or UDS-4)

In CUDS (UDS-4) for interpolation of function is used three upwind nodes and one node downstream.

usual variables

 
	f_{w}=\frac{1}{3}f_{P} + \frac{5}{6}f_{W} + \frac{1}{6}f_{WW}
(2)

normalised variables (uniform grids)

 
	\hat{f_{w}}=\frac{1}{3} + \frac{5}{6}\hat{f_{W}}
(2)

R.K. Aragval

A third-order-accurate upwind scheme for Navier-Stokes solution at high Reynolds numbers

Paper No. AIAA-81-0112, AIAA 19th Aerospace Science Meeting, St. Louis, 1982.

CUI - Cubic Upwind Interpolation

B.P. Leonard

A survey of finite differences of opinion on numerical muddling of incompressible defective confusion equation

paper in ASME, Applied Mechanics Division, Winter Annual Meeting, 1979



My wiki