CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Wiki > A roughness-dependent model

A roughness-dependent model

From CFD-Wiki

(Difference between revisions)
Jump to: navigation, search
(Kinematic Eddy Viscosity)
(Kinematic Eddy Viscosity)
Line 1: Line 1:
-
==Kinematic Eddy Viscosity==
+
==Two-equation eddy viscosity model==
-
Two-equation model:
+
<table width="70%"><tr><td>
<math>  
<math>  
\nu _t  = C_{\mu} {{k^2 } \over \varepsilon }
\nu _t  = C_{\mu} {{k^2 } \over \varepsilon }
-
</math>
+
</math></td><td width="5%">(1)</td></tr></table>
-
where: <math> C_{\mu} = 0.09 </math>
+
where:  
 +
<math> C_{\mu} = 0.09 </math>
-
One-equation model:
+
==One-equation eddy viscosity model==
 +
<table width="70%"><tr><td>
<math>  
<math>  
-
\nu _t  = l k^{{1 \over 2}} = {C_{\mu}}^{1/4} l_m k^{{1 \over 2}}
+
\nu _t  = k^{{1 \over 2}} l
-
</math>
+
</math></td><td width="5%">(2)</td></tr></table>
-
Algebraic model:  
+
==Algebraic eddy viscosity model==
 +
<table width="70%"><tr><td>
 +
<math>
 +
\nu _t(y)  = {C_{\mu}}^{{1 \over 4}} l_m(y) k^{{1 \over 2}}(y)
 +
</math></td><td width="5%">(3)</td></tr></table>
 +
<math>l_m</math> is the mixing length.
 +
 
 +
where:  
 +
<table width="70%"><tr><td>
<math>
<math>
-
k^{{1 \over 2}} = {1 \over {C_{\mu}}^{1/4}}
+
k^{{1 \over 2}}(y) = {1 \over {C_{\mu}}^{{1 \over 4}}}  u_\tau  e^{\frac{-y}{A}}  
-
</math>
+
</math></td><td width="5%">(4)</td></tr></table>
 +
<math>u_\tau </math> is the shear velocity
 +
and:
 +
<table width="70%"><tr><td>
 +
<math>
 +
l_m(y) = \kappa \left( A - \left(A - y_0\right) e^{\frac{-(y-y_0)}{A}} \right)
 +
</math></td><td width="5%">(5)</td></tr></table>
 +
<math>\kappa = 0.4</math>, <math>y_0</math> is the hydrodynamic roughness
 +
 +
therefore:
 +
<table width="70%"><tr><td>
 +
<math>
 +
\nu _t(y)  = \kappa \left( A - \left(A - y_0\right) e^{\frac{-(y-y_0)}{A}} \right)
 +
u_\tau  e^{\frac{-y}{A}} 
 +
</math></td><td width="5%">(6)</td></tr></table>
== References ==
== References ==

Revision as of 14:57, 19 June 2007

Contents

Two-equation eddy viscosity model

 
\nu _t  = C_{\mu} {{k^2 } \over \varepsilon }
(1)

where:  C_{\mu} = 0.09

One-equation eddy viscosity model

 
\nu _t  = k^{{1 \over 2}}  l 
(2)

Algebraic eddy viscosity model

 
\nu _t(y)  = {C_{\mu}}^{{1 \over 4}} l_m(y) k^{{1 \over 2}}(y) 
(3)

l_m is the mixing length.

where:


k^{{1 \over 2}}(y) = {1 \over {C_{\mu}}^{{1 \over 4}}}  u_\tau  e^{\frac{-y}{A}} 
(4)

u_\tau is the shear velocity

and:


l_m(y) = \kappa \left( A - \left(A - y_0\right) e^{\frac{-(y-y_0)}{A}} \right)
(5)

\kappa = 0.4, y_0 is the hydrodynamic roughness

therefore:

 
\nu _t(y)  = \kappa \left( A - \left(A - y_0\right) e^{\frac{-(y-y_0)}{A}} \right)
 u_\tau  e^{\frac{-y}{A}}  
(6)

References

  • Absi, R. (2006), "A roughness and time dependent mixing length equation", Journal of Hydraulic, Coastal and Environmental Engineering, Japan Society of Civil Engineers, (Doboku Gakkai Ronbunshuu B), Vol. 62, No. 4, pp.437-446.


My wiki