CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Wiki > Two phase flow

Two phase flow

From CFD-Wiki

(Difference between revisions)
Jump to: navigation, search
(Importance of two phase flow in industrial configurations)
(Introduction)
Line 1: Line 1:
== Introduction ==
== Introduction ==
-
 
-
this is the introduction
 
=== Importance of two phase flow in industrial configurations ===
=== Importance of two phase flow in industrial configurations ===

Revision as of 20:57, 23 January 2006

Contents

Introduction

Importance of two phase flow in industrial configurations

Two phase flow phenomena occur in various industrial application in all fluid mechanics application fiels. Aerospace, automotive, nuclear applications, etc. In all this domain, prediction of two phase behaviour is important. Prediction of liquid spray in an internal combustion engine should enable us to have a better control on combustion process and then to reduce pollutant emissions. Controlling water - steam equilibrium in a coller system enable to prevent from industrial accident, etc. Any other examples can be quoted here.

Overview of the different available approach

Two main family can be distinguished to model two phase flow, depending of the two phase configuration approach. In case of dispersed configuration a lagrangian approach is suitable. Such an approach consists in following dropplets (or bubbles) during then movement. This is done by applying external force on the particle and solving acceleration, then velocity and finally position. On the other hand, two phase flow can be solve with an eulerien approach. As in all eulerian framework, this approach consists in considering inlet and outlet flux in a given volume. In such an eulerian approach, two family can be distinguished : Mixture model and Two fluids model, those two approach will be detailed in corresponding section bellow.

Lagrangian dispersed two-phase flow modelling

Mixture model for two phase flow

Basics of the mixture model

MAC approach

VOF method

Eulerian Two fluids approach

Basics of the two fluids approach

Interfacial exchange closures

Turbulence modelling in such a context

Conclusion

My wiki