CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Wiki > Non linear wave propagation

Non linear wave propagation

From CFD-Wiki

(Difference between revisions)
Jump to: navigation, search
Line 1: Line 1:
== Problem definition ==
== Problem definition ==
-
:<math> \frac{\partial u}{\partial t}+ c \frac{\partial u}{\partial x}=0
+
:<math> \frac{\partial u}{\partial t}+ u \frac{\partial u}{\partial x}=0
</math>
</math>
== Domain ==  
== Domain ==  
-
x=[0,1]
+
x=[-5,10]
== Initial Condition ==  
== Initial Condition ==  
-
:<math> u(x,0)=e^{-360*{(x-0.25)}^2}</math>
+
:<math> u(x,0)=0 ,x <=0 </math>
-
 
+
:<math> u(x,0)=1 ,x >0  </math>
== Boundary condition ==  
== Boundary condition ==  
u[0]=0,u[imax]=u[imax-1](x[imax]=1.0)
u[0]=0,u[imax]=u[imax-1](x[imax]=1.0)
Line 15: Line 15:
c=1,t=0.25
c=1,t=0.25
== Results ==
== Results ==
-
[[Image:Linear_1d.jpg]]
+
[[Image:Nonlinear_1d.jpg]]
== Reference ==
== Reference ==

Revision as of 01:48, 25 December 2005

Contents

Problem definition

 \frac{\partial u}{\partial t}+ u \frac{\partial u}{\partial x}=0

Domain

x=[-5,10]

Initial Condition

 u(x,0)=0 ,x <=0
 u(x,0)=1 ,x >0

Boundary condition

u[0]=0,u[imax]=u[imax-1](x[imax]=1.0)

Exact solution

 u(x,t)=e^{-360*{((x-c*t)-0.25)}^2}

Numerical method

c=1,t=0.25

Results

Nonlinear 1d.jpg

Reference

My wiki