CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Wiki > Kinetic energy subgrid-scale model

Kinetic energy subgrid-scale model

From CFD-Wiki

(Difference between revisions)
Jump to: navigation, search
Line 1: Line 1:
-
<math>  k_{\rm sgs} = \frac{1}{2}\left(\overline{u_k^2} - \overline{u}_k^2 \right) </math>
+
The subgrid-scale kinetic energy is defined as <br>
 +
:<math>  k_{\rm sgs} = \frac{1}{2}\left(\overline{u_k^2} - \overline{u}_k^2 \right) </math>
 +
 
 +
 
 +
The subgrid-scale stress can then be written as <br>
 +
<math> \tau_{ij} - \frac{2}{3} k_{\rm sgs} \delta_{ij} =-2 C_k k_{\rm sgs}^{1/2} \Delta_f \overline{S}_{ij} </math> <br>
 +
this gives us the transport equation for subgrid-scale kinetic energy <br>
 +
<math> \frac{\partial \overline k_{\rm sgs}}{\partial t} + \frac{\partial \overline u_{j} \overline k_{sgs}} {\partial x_{j}} = - \tau_{ij} \frac{\partial \overline u_{i}}{\partial x_{j}}    - C_{\varepsilon} \frac{k_{\rm sgs}^{3/2}}{\Delta_f} + \frac{\partial}{\partial x_{j}} \left( \frac{\mu_t}{\sigma_k} \frac{\partial k_{\rm sgs}}{\partial x_{j}}  \right) </math>
 +
 
 +
 
 +
 
 +
The subgrid-scale eddy viscosity,<math>  \mu_{t} </math>, is computed using <math>  k_{\rm sgs} </math> as
 +
 
 +
 
 +
<math> \mu_{t} = C_k k_{\rm sgs}^{1/2} \Delta_f  </math>
 +
 
 +
Where the filter-size computed from: <br>
 +
<math> \Delta_f = V^{1/3} </math>

Revision as of 23:43, 18 September 2005

The subgrid-scale kinetic energy is defined as

  k_{\rm sgs} = \frac{1}{2}\left(\overline{u_k^2} - \overline{u}_k^2 \right)


The subgrid-scale stress can then be written as
 \tau_{ij} - \frac{2}{3} k_{\rm sgs} \delta_{ij} =-2 C_k k_{\rm sgs}^{1/2} \Delta_f \overline{S}_{ij}
this gives us the transport equation for subgrid-scale kinetic energy
 \frac{\partial \overline k_{\rm sgs}}{\partial t} + \frac{\partial \overline u_{j} \overline k_{sgs}} {\partial x_{j}} = - \tau_{ij} \frac{\partial \overline u_{i}}{\partial x_{j}}     - C_{\varepsilon} \frac{k_{\rm sgs}^{3/2}}{\Delta_f} + \frac{\partial}{\partial x_{j}} \left( \frac{\mu_t}{\sigma_k} \frac{\partial k_{\rm sgs}}{\partial x_{j}}  \right)


The subgrid-scale eddy viscosity,  \mu_{t} , is computed using   k_{\rm sgs} as


 \mu_{t} = C_k k_{\rm sgs}^{1/2} \Delta_f

Where the filter-size computed from:
 \Delta_f = V^{1/3}

My wiki