CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Wiki > Standard k-epsilon model

Standard k-epsilon model

From CFD-Wiki

(Difference between revisions)
Jump to: navigation, search
Line 2: Line 2:
For k <br>
For k <br>
-
<math>  \frac{\partial}{\partial t} (\rho k) + \frac{\partial}{\partial x_i} (\rho k u_i) = \frac{\partial}{\partial x_j} \left[ \left(\mu + \frac{\mu_t}{\sigma_k} \right) \frac{\partial k}{\partial x_j}\right] + P_k + P_b - \rho \epsilon - Y_M + S_k  </math>
+
:<math>  \frac{\partial}{\partial t} (\rho k) + \frac{\partial}{\partial x_i} (\rho k u_i) = \frac{\partial}{\partial x_j} \left[ \left(\mu + \frac{\mu_t}{\sigma_k} \right) \frac{\partial k}{\partial x_j}\right] + P_k + P_b - \rho \epsilon - Y_M + S_k  </math>
<br>
<br>
Line 8: Line 8:
<br>
<br>
-
<math>  
+
:<math>  
\frac{\partial}{\partial t} (\rho \epsilon) + \frac{\partial}{\partial x_i} (\rho \epsilon u_i) = \frac{\partial}{\partial x_j} \left[\left(\mu + \frac{\mu_t}{\sigma_{\epsilon}} \right) \frac{\partial \epsilon}{\partial x_j} \right] + C_{1 \epsilon}\frac{\epsilon}{k} \left( P_k + C_{3 \epsilon} P_b \right) - C_{2 \epsilon} \rho \frac{\epsilon^2}{k} + S_{\epsilon}
\frac{\partial}{\partial t} (\rho \epsilon) + \frac{\partial}{\partial x_i} (\rho \epsilon u_i) = \frac{\partial}{\partial x_j} \left[\left(\mu + \frac{\mu_t}{\sigma_{\epsilon}} \right) \frac{\partial \epsilon}{\partial x_j} \right] + C_{1 \epsilon}\frac{\epsilon}{k} \left( P_k + C_{3 \epsilon} P_b \right) - C_{2 \epsilon} \rho \frac{\epsilon^2}{k} + S_{\epsilon}
-
 
+
</math>
-
</math>
+
== Modeling turbulent viscosity ==
== Modeling turbulent viscosity ==
Turbulent viscosity is modelled as: <br>
Turbulent viscosity is modelled as: <br>
-
<math>
+
:<math>
\mu_t = \rho C_{\mu} \frac{k^2}{\epsilon}
\mu_t = \rho C_{\mu} \frac{k^2}{\epsilon}
</math>
</math>
Line 25: Line 24:
== Production of k ==
== Production of k ==
-
<math>
+
:<math>
P_k = - \rho \overline{u'_i u'_j} \frac{\partial u_j}{\partial x_i}   
P_k = - \rho \overline{u'_i u'_j} \frac{\partial u_j}{\partial x_i}   
</math>
</math>
<br>
<br>
-
<math> P_k = \mu_t S^2 </math>
+
:<math> P_k = \mu_t S^2 </math>
Where <math> S </math> is the modulus of the mean rate-of-strain tensor, defined as : <br>
Where <math> S </math> is the modulus of the mean rate-of-strain tensor, defined as : <br>
-
<math>
+
:<math>
S \equiv \sqrt{2S_{ij} S_{ij}}  
S \equiv \sqrt{2S_{ij} S_{ij}}  
</math>
</math>
Line 38: Line 37:
== Effect of Bouyancy ==
== Effect of Bouyancy ==
-
<math>
+
:<math>
P_b = \beta g_i \frac{\mu_t}{{\rm Pr}_t} \frac{\partial T}{\partial x_i}  
P_b = \beta g_i \frac{\mu_t}{{\rm Pr}_t} \frac{\partial T}{\partial x_i}  
</math>
</math>
Line 47: Line 46:
The coefficient of thermal expansion, <math> \beta </math> , is defined as <br>
The coefficient of thermal expansion, <math> \beta </math> , is defined as <br>
-
<math>  
+
:<math>  
\beta = - \frac{1}{\rho} \left(\frac{\partial \rho}{\partial T}\right)_p  
\beta = - \frac{1}{\rho} \left(\frac{\partial \rho}{\partial T}\right)_p  
</math>
</math>
Line 53: Line 52:
== Model Constants ==
== Model Constants ==
-
<math>
+
:<math>
C_{1 \epsilon} = 1.44, \;\; C_{2 \epsilon} = 1.92, \;\; C_{\mu} = 0.09, \;\; \sigma_k = 1.0, \;\; \sigma_{\epsilon} = 1.3  
C_{1 \epsilon} = 1.44, \;\; C_{2 \epsilon} = 1.92, \;\; C_{\mu} = 0.09, \;\; \sigma_k = 1.0, \;\; \sigma_{\epsilon} = 1.3  
</math>
</math>

Revision as of 08:09, 14 September 2005

Contents

Transport Equations for standard k-epsilon model

For k

  \frac{\partial}{\partial t} (\rho k) + \frac{\partial}{\partial x_i} (\rho k u_i) = \frac{\partial}{\partial x_j} \left[ \left(\mu + \frac{\mu_t}{\sigma_k} \right) \frac{\partial k}{\partial x_j}\right] + P_k + P_b - \rho \epsilon - Y_M + S_k


For dissipation  \epsilon

 
\frac{\partial}{\partial t} (\rho \epsilon) + \frac{\partial}{\partial x_i} (\rho \epsilon u_i) = \frac{\partial}{\partial x_j} \left[\left(\mu + \frac{\mu_t}{\sigma_{\epsilon}} \right) \frac{\partial \epsilon}{\partial x_j} \right] + C_{1 \epsilon}\frac{\epsilon}{k} \left( P_k + C_{3 \epsilon} P_b \right) - C_{2 \epsilon} \rho \frac{\epsilon^2}{k} + S_{\epsilon}

Modeling turbulent viscosity

Turbulent viscosity is modelled as:


\mu_t = \rho C_{\mu} \frac{k^2}{\epsilon}




Production of k


P_k = - \rho \overline{u'_i u'_j} \frac{\partial u_j}{\partial x_i}


 P_k = \mu_t S^2

Where  S is the modulus of the mean rate-of-strain tensor, defined as :


S \equiv \sqrt{2S_{ij} S_{ij}}

Effect of Bouyancy


P_b = \beta g_i \frac{\mu_t}{{\rm Pr}_t} \frac{\partial T}{\partial x_i}



where Prt is the turbulent Prandtl number for energy and gi is the component of the gravitational vector in the ith direction. For the standard and realizable - models, the default value of Prt is 0.85.

The coefficient of thermal expansion,  \beta , is defined as

 
\beta = - \frac{1}{\rho} \left(\frac{\partial \rho}{\partial T}\right)_p

Model Constants


C_{1 \epsilon} = 1.44, \;\; C_{2 \epsilon} = 1.92, \;\; C_{\mu} = 0.09, \;\; \sigma_k = 1.0, \;\; \sigma_{\epsilon} = 1.3
My wiki