CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Wiki > Standard k-epsilon model

Standard k-epsilon model

From CFD-Wiki

(Difference between revisions)
Jump to: navigation, search
Line 1: Line 1:
 +
== Transport Equation for standard k-epsilon model ==
 +
 +
For k <br>
<math>  \frac{\partial}{\partial t} (\rho k) + \frac{\partial}{\partial x_i} (\rho k u_i) = \frac{\partial}{\partial x_j} \left[ \left(\mu + \frac{\mu_t}{\sigma_k} \right) \frac{\partial k}{\partial x_j}\right] + P_k + P_b - \rho \epsilon - Y_M + S_k  </math>
<math>  \frac{\partial}{\partial t} (\rho k) + \frac{\partial}{\partial x_i} (\rho k u_i) = \frac{\partial}{\partial x_j} \left[ \left(\mu + \frac{\mu_t}{\sigma_k} \right) \frac{\partial k}{\partial x_j}\right] + P_k + P_b - \rho \epsilon - Y_M + S_k  </math>
-
 
 +
<br>
 +
For dissipation <math> \epsilon </math>
<br>
<br>
Line 9: Line 13:
  </math>
  </math>
 +
== Modeling turbulent viscosity ==
 +
Turbulent viscosity is modelled as: <br>
<math>
<math>
\mu_t = \rho C_{\mu} \frac{k^2}{\epsilon}
\mu_t = \rho C_{\mu} \frac{k^2}{\epsilon}
</math>
</math>
 +
<br>
 +
 +
== Model Constants ==
<math>
<math>
C_{1 \epsilon} = 1.44, \;\; C_{2 \epsilon} = 1.92, \;\; C_{\mu} = 0.09, \;\; \sigma_k = 1.0, \;\; \sigma_{\epsilon} = 1.3  
C_{1 \epsilon} = 1.44, \;\; C_{2 \epsilon} = 1.92, \;\; C_{\mu} = 0.09, \;\; \sigma_k = 1.0, \;\; \sigma_{\epsilon} = 1.3  
</math>
</math>

Revision as of 00:14, 14 September 2005

Transport Equation for standard k-epsilon model

For k
  \frac{\partial}{\partial t} (\rho k) + \frac{\partial}{\partial x_i} (\rho k u_i) = \frac{\partial}{\partial x_j} \left[ \left(\mu + \frac{\mu_t}{\sigma_k} \right) \frac{\partial k}{\partial x_j}\right] + P_k + P_b - \rho \epsilon - Y_M + S_k


For dissipation  \epsilon

 
\frac{\partial}{\partial t} (\rho \epsilon) + \frac{\partial}{\partial x_i} (\rho \epsilon u_i) = \frac{\partial}{\partial x_j} \left[\left(\mu + \frac{\mu_t}{\sigma_{\epsilon}} \right) \frac{\partial \epsilon}{\partial x_j} \right] + C_{1 \epsilon}\frac{\epsilon}{k} \left( P_k + C_{3 \epsilon} P_b \right) - C_{2 \epsilon} \rho \frac{\epsilon^2}{k} + S_{\epsilon}

Modeling turbulent viscosity

Turbulent viscosity is modelled as:

\mu_t = \rho C_{\mu} \frac{k^2}{\epsilon}


Model Constants


C_{1 \epsilon} = 1.44, \;\; C_{2 \epsilon} = 1.92, \;\; C_{\mu} = 0.09, \;\; \sigma_k = 1.0, \;\; \sigma_{\epsilon} = 1.3

My wiki