Standard k-epsilon model
From CFD-Wiki
(Difference between revisions)
Line 1: | Line 1: | ||
+ | == Transport Equation for standard k-epsilon model == | ||
+ | |||
+ | For k <br> | ||
<math> \frac{\partial}{\partial t} (\rho k) + \frac{\partial}{\partial x_i} (\rho k u_i) = \frac{\partial}{\partial x_j} \left[ \left(\mu + \frac{\mu_t}{\sigma_k} \right) \frac{\partial k}{\partial x_j}\right] + P_k + P_b - \rho \epsilon - Y_M + S_k </math> | <math> \frac{\partial}{\partial t} (\rho k) + \frac{\partial}{\partial x_i} (\rho k u_i) = \frac{\partial}{\partial x_j} \left[ \left(\mu + \frac{\mu_t}{\sigma_k} \right) \frac{\partial k}{\partial x_j}\right] + P_k + P_b - \rho \epsilon - Y_M + S_k </math> | ||
- | |||
+ | <br> | ||
+ | For dissipation <math> \epsilon </math> | ||
<br> | <br> | ||
Line 9: | Line 13: | ||
</math> | </math> | ||
+ | == Modeling turbulent viscosity == | ||
+ | Turbulent viscosity is modelled as: <br> | ||
<math> | <math> | ||
\mu_t = \rho C_{\mu} \frac{k^2}{\epsilon} | \mu_t = \rho C_{\mu} \frac{k^2}{\epsilon} | ||
</math> | </math> | ||
+ | <br> | ||
+ | |||
+ | == Model Constants == | ||
<math> | <math> | ||
C_{1 \epsilon} = 1.44, \;\; C_{2 \epsilon} = 1.92, \;\; C_{\mu} = 0.09, \;\; \sigma_k = 1.0, \;\; \sigma_{\epsilon} = 1.3 | C_{1 \epsilon} = 1.44, \;\; C_{2 \epsilon} = 1.92, \;\; C_{\mu} = 0.09, \;\; \sigma_k = 1.0, \;\; \sigma_{\epsilon} = 1.3 | ||
</math> | </math> |
Revision as of 00:14, 14 September 2005
Transport Equation for standard k-epsilon model
For k
For dissipation
Modeling turbulent viscosity
Turbulent viscosity is modelled as:
Model Constants