CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Wiki > Navier-Stokes equations

Navier-Stokes equations

From CFD-Wiki

(Difference between revisions)
Jump to: navigation, search
Line 1: Line 1:
The Navier-Stokes equations are the basic governing equations for a viscous, heat conducting fluid. It is a vector equation obtained by applying Newtons Law of Motion to a fluid element and is also called the ''momentum equation''. It is supplemented by the mass conservation equation, also called ''[[Continuity_Equation | continuity equation]]'' and the ''energy equation''. Usually, the term Navier-Stokes equations is used to refer to all of these equations.
The Navier-Stokes equations are the basic governing equations for a viscous, heat conducting fluid. It is a vector equation obtained by applying Newtons Law of Motion to a fluid element and is also called the ''momentum equation''. It is supplemented by the mass conservation equation, also called ''[[Continuity_Equation | continuity equation]]'' and the ''energy equation''. Usually, the term Navier-Stokes equations is used to refer to all of these equations.
 +
 +
The instantaneous continuity equation (1), momentum equation (2) and energy equation (3) for a compressible fluid can be written as:
 +
 +
<table width="100%">
 +
<tr><td>
 +
:<math>
 +
\frac{\partial \rho}{\partial t} +
 +
\frac{\partial}{\partial x_j}\left[ \rho u_j \right] = 0
 +
</math>     
 +
</td><td width="5%">(1)</td></tr>
 +
<tr><td>
 +
:<math>
 +
\frac{\partial}{\partial t}\left( \rho u_i \right) +
 +
\frac{\partial}{\partial x_j}
 +
\left[ \rho u_i u_j + p \delta_{ij} - \tau_{ji} \right] = 0
 +
</math>
 +
</td><td>(2)</td></tr>
 +
<tr><td>
 +
:<math>
 +
\frac{\partial}{\partial t}\left( \rho e_0 \right) +
 +
\frac{\partial}{\partial x_j}
 +
\left[ \rho u_j e_0 + u_j p + q_j - u_i \tau_{ij} \right] = 0
 +
</math>
 +
</td><td>(3)</td></tr>
 +
</table>
 +
 +
For a Newtonian fluid, assuming Stokes Law for mono-atomic gases, the viscous stress is given by:
 +
 +
<table width="100%">
 +
<tr><td>
 +
:<math>
 +
\tau_{ij} = 2 \mu S_{ij}^*
 +
</math>
 +
</td><td width="5%">(4)</td></tr>
 +
</table>
 +
 +
Where the trace-less viscous strain-rate is defined by:
 +
 +
<table width="100%">
 +
<tr><td>
 +
:<math>
 +
S_{ij}^* \equiv
 +
\frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} +
 +
                \frac{\partial u_j}{\partial x_i} \right) -
 +
                \frac{1}{3} \frac{\partial u_k}{\partial x_k} \delta_{ij}
 +
</math>
 +
</td><td width="5%">(5)</td></tr>
 +
</table>
 +
 +
The heat-flux, <math>q_j</math>, is given by Fourier's law:
 +
 +
<table width="100%">
 +
<tr><td>
 +
:<math>
 +
q_j = -\lambda \frac{\partial T}{\partial x_j}
 +
    \equiv -C_p \frac{\mu}{Pr} \frac{\partial T}{\partial x_j}
 +
</math>
 +
</td><td width="5%">(6)</td></tr>
 +
</table>
 +
 +
Where the laminar Prandtl number <math>Pr</math> is defined by:
 +
 +
<table width="100%">
 +
<tr><td>
 +
:<math>
 +
Pr \equiv \frac{C_p \mu}{\lambda}
 +
</math>
 +
</td><td width="5%">(7)</td></tr>
 +
</table>
 +
 +
To close these equations it is also necessary to specify an equation of state. Assuming a calorically perfect gas the following relations are valid:
 +
 +
<table width="100%">
 +
<tr><td>
 +
:<math>
 +
\gamma \equiv \frac{C_p}{C_v} ~~,~~
 +
p = \rho R T ~~,~~
 +
e = C_v T ~~,~~
 +
C_p - C_v = R
 +
</math>
 +
</td><td width="5%">(8)</td></tr>
 +
</table>
 +
 +
Where <math>\gamma</math>, <math>C_p</math>, <math>C_v</math> and <math>R</math> are constant.
 +
 +
The total energy <math>e_0</math> is defined by:
 +
 +
<table width="100%">
 +
<tr><td>
 +
:<math>
 +
e_0 \equiv e + \frac{u_k u_k}{2}
 +
</math>
 +
</td><td width="5%">(9)</td></tr>
 +
</table>
 +
 +
Note that the corresponding expression (15) for [[Favre_averaged_Navier-Stokes_equations | Favre averaged turbulent flows]] contains an extra term related to the turbulent energy.
 +
 +
Equations (1)-(9), supplemented with gas data for <math>\gamma</math>, <math>Pr</math>, <math>\mu</math> and perhaps <math>R</math>, form a closed set of partial differential equations, and need only be complemented with boundary conditions.
 +
 +
==Existence and Uniqueness==
 +
 +
==External Links==
 +
*[http://www.navier-stokes.net Navier-Stokes.net]
 +
*[http://scienceworld.wolfram.com/physics/Navier-StokesEquations.html Navier-Stokes equations at mathworld.com]
 +
*[http://www.claymath.org/millennium/Navier-Stokes_Equations/ Millemium Problem]

Revision as of 10:07, 8 September 2005

The Navier-Stokes equations are the basic governing equations for a viscous, heat conducting fluid. It is a vector equation obtained by applying Newtons Law of Motion to a fluid element and is also called the momentum equation. It is supplemented by the mass conservation equation, also called continuity equation and the energy equation. Usually, the term Navier-Stokes equations is used to refer to all of these equations.

The instantaneous continuity equation (1), momentum equation (2) and energy equation (3) for a compressible fluid can be written as:


\frac{\partial \rho}{\partial t} +
\frac{\partial}{\partial x_j}\left[ \rho u_j \right] = 0
(1)

\frac{\partial}{\partial t}\left( \rho u_i \right) +
\frac{\partial}{\partial x_j}
\left[ \rho u_i u_j + p \delta_{ij} - \tau_{ji} \right] = 0
(2)

\frac{\partial}{\partial t}\left( \rho e_0 \right) +
\frac{\partial}{\partial x_j}
\left[ \rho u_j e_0 + u_j p + q_j - u_i \tau_{ij} \right] = 0
(3)

For a Newtonian fluid, assuming Stokes Law for mono-atomic gases, the viscous stress is given by:


\tau_{ij} = 2 \mu S_{ij}^*
(4)

Where the trace-less viscous strain-rate is defined by:


S_{ij}^* \equiv
 \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} +
                \frac{\partial u_j}{\partial x_i} \right) -
                \frac{1}{3} \frac{\partial u_k}{\partial x_k} \delta_{ij}
(5)

The heat-flux, q_j, is given by Fourier's law:


q_j = -\lambda \frac{\partial T}{\partial x_j}
    \equiv -C_p \frac{\mu}{Pr} \frac{\partial T}{\partial x_j}
(6)

Where the laminar Prandtl number Pr is defined by:


Pr \equiv \frac{C_p \mu}{\lambda}
(7)

To close these equations it is also necessary to specify an equation of state. Assuming a calorically perfect gas the following relations are valid:


\gamma \equiv \frac{C_p}{C_v} ~~,~~
p = \rho R T ~~,~~
e = C_v T ~~,~~
C_p - C_v = R
(8)

Where \gamma, C_p, C_v and R are constant.

The total energy e_0 is defined by:


e_0 \equiv e + \frac{u_k u_k}{2}
(9)

Note that the corresponding expression (15) for Favre averaged turbulent flows contains an extra term related to the turbulent energy.

Equations (1)-(9), supplemented with gas data for \gamma, Pr, \mu and perhaps R, form a closed set of partial differential equations, and need only be complemented with boundary conditions.

Existence and Uniqueness

External Links

My wiki