CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Wiki > Isentropic flow relations

Isentropic flow relations

From CFD-Wiki

(Difference between revisions)
Jump to: navigation, search
Line 4: Line 4:
<math>\frac{p_0}{p} = (\frac{T_0}{T})^\frac{\gamma}{\gamma - 1}</math>
<math>\frac{p_0}{p} = (\frac{T_0}{T})^\frac{\gamma}{\gamma - 1}</math>
-
 
-
<math>\frac{T_0}{T}=1+\frac{\gamma-1}{2}M^2</math>
 
<math>\frac{p_0}{p}=(1+\frac{\gamma-1}{2}M^2)^{\frac{\gamma}{\gamma-1}}</math>
<math>\frac{p_0}{p}=(1+\frac{\gamma-1}{2}M^2)^{\frac{\gamma}{\gamma-1}}</math>
 +
 +
<math>\frac{T_0}{T}=1+\frac{\gamma-1}{2}M^2</math>
<math>\frac{\rho_0}{\rho}=(1+\frac{\gamma-1}{2}M^2)^{\frac{1}{\gamma-1}}</math>
<math>\frac{\rho_0}{\rho}=(1+\frac{\gamma-1}{2}M^2)^{\frac{1}{\gamma-1}}</math>
-
<math>\frac{A}{A*}=(\frac{\gamma+1}{2})^{\frac{-\gamma+1}{2(\gamma-1)}}*(1+\frac{\gamma-1}{2}M^2)^{\frac{\gamma+1}{2(\gamma-1)}}/M</math>
+
<math>\frac{A}{A*}=\frac{1}{M}*(\frac{\gamma+1}{2})^{\frac{-\gamma+1}{2(\gamma-1)}}*(1+\frac{\gamma-1}{2}M^2)^{\frac{\gamma+1}{2(\gamma-1)}}</math>

Revision as of 21:39, 3 September 2005

M = \frac{v}{a}

a = \sqrt{\gamma R T}

\frac{p_0}{p} = (\frac{T_0}{T})^\frac{\gamma}{\gamma - 1}

\frac{p_0}{p}=(1+\frac{\gamma-1}{2}M^2)^{\frac{\gamma}{\gamma-1}}

\frac{T_0}{T}=1+\frac{\gamma-1}{2}M^2

\frac{\rho_0}{\rho}=(1+\frac{\gamma-1}{2}M^2)^{\frac{1}{\gamma-1}}

\frac{A}{A*}=\frac{1}{M}*(\frac{\gamma+1}{2})^{\frac{-\gamma+1}{2(\gamma-1)}}*(1+\frac{\gamma-1}{2}M^2)^{\frac{\gamma+1}{2(\gamma-1)}}

My wiki