Zeta-f model
From CFD-Wiki
(Difference between revisions)
Mirzapopovac (Talk | contribs) |
Mirzapopovac (Talk | contribs) |
||
Line 1: | Line 1: | ||
- | The ''zeta-f'' model is a robust modification of the elliptic relaxation model. The set of equations, for the incompressible Newtonian fluid, constituting the <math>\zeta-f</math> model | + | The ''zeta-f'' model is a robust modification of the elliptic relaxation model. The set of equations, for the incompressible Newtonian fluid, constituting the <math>\zeta-f</math> model is given below. |
- | The turbulent viscosity | + | == The turbulent viscosity <math>\nu_t</math> == |
<math>\nu_t = C_\mu \, \zeta \, k \, T</math> | <math>\nu_t = C_\mu \, \zeta \, k \, T</math> | ||
- | The turbulent kinetic energy <math>k</math> | + | == The turbulent kinetic energy <math>k</math> == |
<math>\frac{\partial k}{\partial t} + U_j \frac{\partial k}{\partial x_j} = P_k - \varepsilon + \frac{\partial}{\partial x_j} \left[ \left( \nu + \frac{\nu_t}{\sigma_{k}} \right) \frac{\partial k}{\partial x_j} \right]</math> | <math>\frac{\partial k}{\partial t} + U_j \frac{\partial k}{\partial x_j} = P_k - \varepsilon + \frac{\partial}{\partial x_j} \left[ \left( \nu + \frac{\nu_t}{\sigma_{k}} \right) \frac{\partial k}{\partial x_j} \right]</math> | ||
- | The turbulent kinetic energy dissipation rate <math>\varepsilon</math> | + | == The turbulent kinetic energy dissipation rate <math>\varepsilon</math> == |
<math>\frac{\partial \varepsilon}{\partial t} + U_j \frac{\partial \varepsilon}{\partial x_j} = \frac{C_{\varepsilon 1} P_k - C_{\varepsilon 2} \varepsilon}{T} + \frac{\partial}{\partial x_j} \left[ \left( \nu + \frac{\nu_t}{\sigma_{\varepsilon}} \right) \frac{\partial \varepsilon}{\partial x_j} \right]</math> | <math>\frac{\partial \varepsilon}{\partial t} + U_j \frac{\partial \varepsilon}{\partial x_j} = \frac{C_{\varepsilon 1} P_k - C_{\varepsilon 2} \varepsilon}{T} + \frac{\partial}{\partial x_j} \left[ \left( \nu + \frac{\nu_t}{\sigma_{\varepsilon}} \right) \frac{\partial \varepsilon}{\partial x_j} \right]</math> | ||
- | The normalized fluctuating velocity normal to the streamlines <math>\zeta</math> | + | == The normalized fluctuating velocity normal to the streamlines <math>\zeta</math> == |
<math>\frac{\partial \zeta}{\partial t} + U_j \frac{\partial \zeta}{\partial x_j} = f - \frac{\zeta}{k} P_k + \frac{\partial}{\partial x_j} \left[ \left( \nu + \frac{\nu_t}{\sigma_{\zeta}} \right) \frac{\partial \zeta}{\partial x_j} \right]</math> | <math>\frac{\partial \zeta}{\partial t} + U_j \frac{\partial \zeta}{\partial x_j} = f - \frac{\zeta}{k} P_k + \frac{\partial}{\partial x_j} \left[ \left( \nu + \frac{\nu_t}{\sigma_{\zeta}} \right) \frac{\partial \zeta}{\partial x_j} \right]</math> | ||
- | The elliptic relaxation function <math>f</math> | + | == The elliptic relaxation function <math>f</math> == |
<math>L^2 \nabla^2 f - f = \frac{1}{T} \left( C_1 - 1 + C'_2 \frac{P_k}{\varepsilon} \right) \left( \zeta - \frac{2}{3} \right)</math> | <math>L^2 \nabla^2 f - f = \frac{1}{T} \left( C_1 - 1 + C'_2 \frac{P_k}{\varepsilon} \right) \left( \zeta - \frac{2}{3} \right)</math> | ||
- | The production of the turbulent kinetic energy <math>P_k</math> | + | == The production of the turbulent kinetic energy <math>P_k</math> == |
:<math> | :<math> | ||
Line 36: | Line 36: | ||
- | The modulus of the mean rate-of-strain tensor <math>S</math> | + | == The modulus of the mean rate-of-strain tensor <math>S</math> == |
<br> | <br> | ||
:<math> | :<math> | ||
Line 43: | Line 43: | ||
- | The turbulence time scale <math>T</math> | + | == The turbulence time scale <math>T</math> == |
<math>T = max \left[ min \left( \frac{k}{\varepsilon},\, \frac{0.6}{\sqrt{6} C_{\mu} |S|\zeta} \right), C_T \left( \frac{\nu^3}{\varepsilon} \right)^{1/2} \right]</math> | <math>T = max \left[ min \left( \frac{k}{\varepsilon},\, \frac{0.6}{\sqrt{6} C_{\mu} |S|\zeta} \right), C_T \left( \frac{\nu^3}{\varepsilon} \right)^{1/2} \right]</math> | ||
- | The turbulence length scale <math>L</math> | + | == The turbulence length scale <math>L</math> == |
<math>L = C_L \, max \left[ min \left( \frac{k^{3/2}}{\varepsilon}, \, | <math>L = C_L \, max \left[ min \left( \frac{k^{3/2}}{\varepsilon}, \, | ||
Line 55: | Line 55: | ||
- | The coefficients | + | == The coefficients == |
<math>C_\mu = 0.22</math>, <math>\sigma_{k} = 1</math>, <math>\sigma_{\varepsilon} = 1.3</math>, <math>\sigma_{\zeta} = 1.2</math>, <math>C_{\varepsilon 1} = 1.4 (1 + 0.012 / \zeta)</math>, <math>C_{\varepsilon 2} = 1.9</math>, <math>C_1 = 1.4</math>, <math>C_2' = 0.65</math>, <math>C_T = 6</math>, <math>C_L = 0.36</math> and <math>C_{\eta} = 85</math>. | <math>C_\mu = 0.22</math>, <math>\sigma_{k} = 1</math>, <math>\sigma_{\varepsilon} = 1.3</math>, <math>\sigma_{\zeta} = 1.2</math>, <math>C_{\varepsilon 1} = 1.4 (1 + 0.012 / \zeta)</math>, <math>C_{\varepsilon 2} = 1.9</math>, <math>C_1 = 1.4</math>, <math>C_2' = 0.65</math>, <math>C_T = 6</math>, <math>C_L = 0.36</math> and <math>C_{\eta} = 85</math>. |
Revision as of 12:21, 22 January 2007
The zeta-f model is a robust modification of the elliptic relaxation model. The set of equations, for the incompressible Newtonian fluid, constituting the model is given below.
The turbulent viscosity
The turbulent kinetic energy
The turbulent kinetic energy dissipation rate
The normalized fluctuating velocity normal to the streamlines
The elliptic relaxation function
The production of the turbulent kinetic energy
The modulus of the mean rate-of-strain tensor
The turbulence time scale
The turbulence length scale
The coefficients
, , , , , , , , , and .
References
- Popovac, M., Hanjalic, K. Compound Wall Treatment for RANS Computation of Complex Turbulent Flows and Heat Transfer, Flow, Turbulence and Combustion, DOI 10.1007/s10494-006-9067-x, 2007.
- Hanjalic, K., Popovac, M., Hadziabdic, M. A robust near-wall elliptic-relaxation eddy-viscosity turbulence model for CFD, Int. J. Heat Fluid Flow, 25, 1047–1051, 2004.