CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Wiki > Non linear wave propagation

Non linear wave propagation

From CFD-Wiki

(Difference between revisions)
Jump to: navigation, search
(fixed up some formulas)
Line 2: Line 2:
:<math> \frac{\partial u}{\partial t}+ u \frac{\partial u}{\partial x}=0
:<math> \frac{\partial u}{\partial t}+ u \frac{\partial u}{\partial x}=0
</math>
</math>
 +
== Domain ==  
== Domain ==  
-
x=[-5,10]
+
:<math>x \in \left[-5,10\right]</math>
 +
 
== Initial Condition ==  
== Initial Condition ==  
-
:<math> u(x,0)=0 ,x <=0 </math>
+
:<math>u(x,0) =  
-
:<math> u(x,0)=1 ,x >0 </math>
+
\begin{cases}
 +
0 & x \le 0 \\
 +
1 & x > 0
 +
\end{cases}
 +
</math>
 +
 
== Boundary condition ==  
== Boundary condition ==  
-
u[0]=0
+
:<math>u(0,t)=0</math>
== Exact solution ==
== Exact solution ==
-
:<math> u(x,t)=0 ,x<=0 </math>
+
:<math>u(x,t) =  
-
:<math> u(x,t)=x/t, 0<x<t </math>
+
\begin{cases}
-
:<math> u(x,t)=1.0 ,\mbox{otherwise} </math>
+
0 & x \le 0 \\
 +
x/t & 0 < x < t \\
 +
1 & \mbox{otherwise}
 +
\end{cases}
 +
</math>
 +
 
== Numerical method ==  
== Numerical method ==  
 +
== Results ==
== Results ==
[[Image:Nonlinear_1d.png]]
[[Image:Nonlinear_1d.png]]
== Reference ==
== Reference ==

Revision as of 23:28, 25 December 2005

Contents

Problem definition

 \frac{\partial u}{\partial t}+ u \frac{\partial u}{\partial x}=0

Domain

x \in \left[-5,10\right]

Initial Condition

u(x,0) = 
\begin{cases}
0 & x \le 0 \\
1 & x > 0
\end{cases}

Boundary condition

u(0,t)=0

Exact solution

u(x,t) = 
\begin{cases}
0 & x \le 0 \\
x/t & 0 < x < t \\
1 & \mbox{otherwise}
\end{cases}

Numerical method

Results

Nonlinear 1d.png

Reference

My wiki