CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Wiki > Conjugate gradient methods

Conjugate gradient methods

From CFD-Wiki

(Difference between revisions)
Jump to: navigation, search
(added dot product)
Line 2: Line 2:
For the system of equations: <br>
For the system of equations: <br>
-
:<math> AX = B </math> <br>
+
:<math> A \cdot X = B </math> <br>
The unpreconditioned conjugate gradient method constructs the '''i'''th iterate <math>x^{(k)}</math>  as an element of <math> x^{(k)}  + span\left\{ {r^{(0)} ,...,A^{i - 1} r^{(0)} } \right\}  </math> so that  so that <math> \left( {x^{(0)}  - \hat x} \right)^T A\left( {x^{(i)}  - \hat x} \right) </math>  is minimized , where  <math> {\hat x} </math> is the exact solution of <math> AX = B </math>. <br>
The unpreconditioned conjugate gradient method constructs the '''i'''th iterate <math>x^{(k)}</math>  as an element of <math> x^{(k)}  + span\left\{ {r^{(0)} ,...,A^{i - 1} r^{(0)} } \right\}  </math> so that  so that <math> \left( {x^{(0)}  - \hat x} \right)^T A\left( {x^{(i)}  - \hat x} \right) </math>  is minimized , where  <math> {\hat x} </math> is the exact solution of <math> AX = B </math>. <br>

Revision as of 20:34, 15 December 2005

Basic Concept

For the system of equations:

 A \cdot X = B

The unpreconditioned conjugate gradient method constructs the ith iterate x^{(k)} as an element of  x^{(k)}  + span\left\{ {r^{(0)} ,...,A^{i - 1} r^{(0)} } \right\}  so that so that  \left( {x^{(0)}  - \hat x} \right)^T A\left( {x^{(i)}  - \hat x} \right) is minimized , where  {\hat x} is the exact solution of  AX = B .

This minimum is guaranteed to exist in general only if A is symmetric positive definite. The preconditioned version of these methods use a different subspace for constructing the iterates, but it satisfies the same minimization property over different subspace. It requires that the preconditioner M is symmetric and positive definite.



Return to Numerical Methods

My wiki