Baldwin-Barth model
From CFD-Wiki
(Difference between revisions)
Line 38: | Line 38: | ||
P = \nu _T \left[ {\left( {{{\partial U_i } \over {\partial x_j }} + {{\partial U_j } \over {\partial x_i }}} \right){{\partial U_i } \over {\partial x_j }} - {2 \over 3}{{\partial U_k } \over {\partial x_k }}{{\partial U_k } \over {\partial x_k }}} \right] | P = \nu _T \left[ {\left( {{{\partial U_i } \over {\partial x_j }} + {{\partial U_j } \over {\partial x_i }}} \right){{\partial U_i } \over {\partial x_j }} - {2 \over 3}{{\partial U_k } \over {\partial x_k }}{{\partial U_k } \over {\partial x_k }}} \right] | ||
</math> | </math> | ||
+ | |||
+ | |||
+ | :<math> | ||
+ | D_1 = 1 - e^{{{ - y^ + } \over {A_o^ + }}} | ||
+ | </math> <br> | ||
+ | :<math> | ||
+ | D_2 = 1 - e^{{{ - y^ + } \over {A_2^ + }}} | ||
+ | </math> <br> | ||
+ | |||
+ | |||
+ | :<math> | ||
+ | f_2 = {{C_{\varepsilon 1} } \over {C_{\varepsilon 2} }} + \left( {1 - {{C_{\varepsilon 1} } \over {C_{\varepsilon 2} }}} \right)\left( {{1 \over {\kappa y^ + }} + D_1 D_2 } \right)\left[ {\sqrt {D_1 D_2 } + {{y^ + } \over {\sqrt {D_1 D_2 } }}\left( {{{D_2 } \over {A_o^ + }}e^{{{ - y^ + } \over {A_o^ + }}} + {{D_1 } \over {A_2^ + }}e^{{{ - y^ + } \over {A_2^ + }}} } \right)} \right] | ||
+ | |||
+ | </math> <br> |
Revision as of 09:05, 26 September 2005
Kinematic Eddy Viscosity
Turbulence Reynolds Number
Closure Coefficients and Auxilary Relations