COnvrg sub.f90 - calculationg
From CFD-Wiki
(Difference between revisions)
Line 24: | Line 24: | ||
include 'icomm_1.f90' | include 'icomm_1.f90' | ||
- | |||
Dimension Res(nx,ny) | Dimension Res(nx,ny) | ||
Line 31: | Line 30: | ||
Res_Sum = 0. | Res_Sum = 0. | ||
- | |||
Res_vol = 0. | Res_vol = 0. | ||
Do 20 I=2,NXmaxP-1 | Do 20 I=2,NXmaxP-1 | ||
- | |||
Do 20 J=2,NYmaxP-1 | Do 20 J=2,NYmaxP-1 | ||
Res_vol = Ap(i,j) * F(i ,j ,nf) - & | Res_vol = Ap(i,j) * F(i ,j ,nf) - & | ||
- | + | ( As(i,j) * F(i ,j-1,nf) + & | |
- | + | An(i,j) * F(i ,j+1,nf) + & | |
- | + | Aw(i,j) * F(i-1,j ,nf) + & | |
- | + | Ae(i,j) * F(i+1,j ,nf) ) & | |
- | + | ||
- | + | ||
- | + | ||
- | + | ||
- Sp(i,j) | - Sp(i,j) | ||
Line 53: | Line 46: | ||
Res_Sum = Res_Sum + Res_vol | Res_Sum = Res_Sum + Res_vol | ||
- | |||
20 continue | 20 continue | ||
Line 59: | Line 51: | ||
Return | Return | ||
- | |||
End | End | ||
</pre> | </pre> |
Revision as of 20:53, 20 September 2005
!Sample program for solving Smith-Hutton Test using different schemes of covective terms approximation - Convergence Criteria computing modul Copyright (C) 2005 Michail Kirichkov This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version. This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details. You should have received a copy of the GNU General Public License along with this program; if not, write to the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA. !********************************************************************** Subroutine Convergence_Criteria(NF) include 'icomm_1.f90' Dimension Res(nx,ny) res = 0. Res_Sum = 0. Res_vol = 0. Do 20 I=2,NXmaxP-1 Do 20 J=2,NYmaxP-1 Res_vol = Ap(i,j) * F(i ,j ,nf) - & ( As(i,j) * F(i ,j-1,nf) + & An(i,j) * F(i ,j+1,nf) + & Aw(i,j) * F(i-1,j ,nf) + & Ae(i,j) * F(i+1,j ,nf) ) & - Sp(i,j) res(i,j) = Res_vol Res_Sum = Res_Sum + Res_vol 20 continue write(*,*)Res_Sum Return End