Wall-adapting local eddy-viscosity (WALE) model
From CFD-Wiki
(Difference between revisions)
m (The description of the square of the velocity gradient tensor was incompletely mentioned, which is now complete) |
m |
||
Line 9: | Line 9: | ||
<math> S_{ij}^{d} = \frac{1}{2} \left( \overline{g}_{ij}^{2} + \overline{g}_{ji}^{2} \right) - \frac{1}{3} \delta_{ij} \overline{g}_{kk}^{2} </math> | <math> S_{ij}^{d} = \frac{1}{2} \left( \overline{g}_{ij}^{2} + \overline{g}_{ji}^{2} \right) - \frac{1}{3} \delta_{ij} \overline{g}_{kk}^{2} </math> | ||
- | <math> \overline{g}_{ij} = \frac{\partial \overline{u_i}}{\partial x_{j}} | + | <math> \overline{g}_{ij} = \frac{\partial \overline{u_i}}{\partial x_{j}} </math> |
<math> \overline{g}_{ij}^{2} = \overline{g}_{ik} \overline{g}_{kj} </math> | <math> \overline{g}_{ij}^{2} = \overline{g}_{ik} \overline{g}_{kj} </math> |
Latest revision as of 08:31, 19 May 2018
In the WALE model the eddy viscosity is modeled by:
where is the rate-of-strain tensor for the resolved scale defined by
Where the constant