A roughness-dependent model
From CFD-Wiki
(→Algebraic eddy viscosity model [Absi (2006)]) |
(→The mean velocity profile) |
||
(13 intermediate revisions not shown) | |||
Line 1: | Line 1: | ||
- | ==Two-equation eddy viscosity model== | + | ==Two-equation <math>k</math>-<math>\epsilon</math> eddy viscosity model== |
<table width="70%"><tr><td> | <table width="70%"><tr><td> | ||
<math> | <math> | ||
- | \nu _t = C_{\mu} {{k^2 } \over \ | + | \nu _t = C_{\mu} {{k^2 } \over \epsilon } |
</math></td><td width="5%">(1)</td></tr></table> | </math></td><td width="5%">(1)</td></tr></table> | ||
where: | where: | ||
<math> C_{\mu} = 0.09 </math> | <math> C_{\mu} = 0.09 </math> | ||
+ | |||
+ | [http://www.cfd-online.com/Wiki/Standard_k-epsilon_model <math>k</math>-<math>\epsilon</math> model] | ||
==One-equation eddy viscosity model== | ==One-equation eddy viscosity model== | ||
Line 12: | Line 14: | ||
\nu _t = k^{{1 \over 2}} l | \nu _t = k^{{1 \over 2}} l | ||
</math></td><td width="5%">(2)</td></tr></table> | </math></td><td width="5%">(2)</td></tr></table> | ||
+ | |||
+ | [http://www.cfd-online.com/Wiki/Prandtl%27s_one-equation_model One-equation model] | ||
==Algebraic eddy viscosity model== | ==Algebraic eddy viscosity model== | ||
Line 20: | Line 24: | ||
<math>l_m</math> is the mixing length. | <math>l_m</math> is the mixing length. | ||
- | ===Algebraic model for the turbulent kinetic | + | ===Algebraic model for the turbulent kinetic energy=== |
<table width="70%"><tr><td> | <table width="70%"><tr><td> | ||
<math> | <math> | ||
k^{{1 \over 2}}(y) = {1 \over {C_{\mu}}^{{1 \over 4}}} u_\tau e^{\frac{-y}{A}} | k^{{1 \over 2}}(y) = {1 \over {C_{\mu}}^{{1 \over 4}}} u_\tau e^{\frac{-y}{A}} | ||
</math></td><td width="5%">(4)</td></tr></table> | </math></td><td width="5%">(4)</td></tr></table> | ||
- | <math>u_\tau </math> is the shear velocity and <math>A</math> a model parameter. | + | <math>u_\tau </math> is the shear velocity and <math>A</math> a model parameter. |
+ | |||
+ | For steady open channel flows in local equilibrium, where the energy production is balanced by the dissipation, from the modeled <math>k</math>-equation [[#References|[Nezu and Nakagawa (1993)]]] obtained a similar semi-theoretical equation. | ||
+ | |||
+ | ===Algebraic model for the mixing length=== | ||
+ | |||
+ | For local equilibrium, an extension of von Kármán’s similarity hypothesis allows to write, with equation (4) [[#References|[Absi (2006)]]]: | ||
- | |||
<table width="70%"><tr><td> | <table width="70%"><tr><td> | ||
<math> | <math> | ||
l_m(y) = \kappa \left( A - \left(A - y_0\right) e^{\frac{-(y-y_0)}{A}} \right) | l_m(y) = \kappa \left( A - \left(A - y_0\right) e^{\frac{-(y-y_0)}{A}} \right) | ||
</math></td><td width="5%">(5)</td></tr></table> | </math></td><td width="5%">(5)</td></tr></table> | ||
- | <math>\kappa = 0.4</math>, <math>y_0</math> is the hydrodynamic roughness | + | <math>\kappa = 0.4</math>, <math>y_0</math> is the hydrodynamic roughness. |
+ | For a smooth wall (<math>y_0 = 0</math>): | ||
+ | <table width="70%"><tr><td> | ||
+ | <math> | ||
+ | l_m(y) = \kappa A \left( 1 - e^{\frac{-y}{A}} \right) | ||
+ | </math></td><td width="5%">(6)</td></tr></table> | ||
===the algebraic eddy viscosity model is therefore=== | ===the algebraic eddy viscosity model is therefore=== | ||
Line 39: | Line 53: | ||
\nu _t(y) = \kappa \left( A - \left(A - y_0\right) e^{\frac{-(y-y_0)}{A}} \right) | \nu _t(y) = \kappa \left( A - \left(A - y_0\right) e^{\frac{-(y-y_0)}{A}} \right) | ||
u_\tau e^{\frac{-y}{A}} | u_\tau e^{\frac{-y}{A}} | ||
- | </math></td><td width="5%">( | + | </math></td><td width="5%">(7)</td></tr></table> |
+ | |||
+ | |||
+ | ==The mean velocity profile== | ||
+ | |||
+ | For local equilibrium, we are able to find the mean velocity profile <math>u</math> from the turbulent kinetic energy <math>k</math> (equation 4) and the mixing length <math>l_m</math> (equation 5), by: | ||
+ | <table width="70%"><tr><td> | ||
+ | <math> | ||
+ | {{d u} \over {d y}} = C_{\mu}^{1 \over 4} {{k^{1 \over 2}} \over {l_m}} | ||
+ | </math></td><td width="5%">(8)</td></tr></table> | ||
+ | |||
+ | Figure (1) shows that the velocity profile obtained from equations (8), (4) and (5) (solid line) is more accurate than the logarithmic velocity profile (dash-dotted line). | ||
+ | |||
+ | [[Image:fig7a.jpg]] | ||
+ | [[Image:fig7b.jpg]] | ||
+ | |||
+ | '''Figure 1''', Vertical distribution of mean flow velocity. | ||
+ | <math>A = {{h} \over {c_1}}</math>; <math>c_1 = 1</math>; | ||
+ | Dash-dotted line: logarithmic profile; solid line: obtained from equation (8); symbols: experimental data ([[#References|[Sukhodolov ''et al.'' (1998)]]]). a) profile 2: <math>y_0 = 0.062 cm</math>; <math>h = 145 cm</math>; <math>u_\tau = 3.82 cm/s</math>. b) profile 4: <math>y_0 = 0.113 cm</math>; <math>h = 164.5 cm</math>; <math>u_\tau = 3.97 cm/s</math> ; (values of <math>y_0 , h, u_\tau</math> are from [[#References|[Sukhodolov ''et al.'' (1998)]]]); Figure from [[#References|[Absi (2006)]]]. | ||
== References == | == References == | ||
- | * {{reference-paper|author=Absi, R. |year=2006|title=A roughness and time dependent mixing length equation|rest=Journal of Hydraulic, Coastal and Environmental Engineering | + | * {{reference-paper|author=Absi, R. |year=2006|title=[http://www.jstage.jst.go.jp/article/jscejb/62/4/62_437/_article A roughness and time dependent mixing length equation]|rest=''Journal of Hydraulic, Coastal and Environmental Engineering, (Doboku Gakkai Ronbunshuu B),'' Japan Society of Civil Engineers, Vol. '''62''', No. 4, pp.437-446}} |
+ | |||
+ | * {{reference-paper|author=Nezu, I. and Nakagawa, H. |year=1993|title=Turbulence in open-channel flows|rest=A.A. Balkema, Ed. Rotterdam, The Netherlands}} | ||
+ | |||
+ | * {{reference-paper|author=Sukhodolov, A., Thiele, M. and Bungartz, H. |year=1998|title=Turbulence structure in a river reach with sand bed|rest=''Water Resour. Res.'', Vol. '''34''', pp. 1317-1334}} | ||
+ | |||
[[Category:Turbulence models]] | [[Category:Turbulence models]] | ||
{{stub}} | {{stub}} |
Latest revision as of 12:47, 22 June 2007
Contents |
Two-equation - eddy viscosity model
(1) |
where:
One-equation eddy viscosity model
(2) |
Algebraic eddy viscosity model
(3) |
is the mixing length.
Algebraic model for the turbulent kinetic energy
(4) |
is the shear velocity and a model parameter.
For steady open channel flows in local equilibrium, where the energy production is balanced by the dissipation, from the modeled -equation [Nezu and Nakagawa (1993)] obtained a similar semi-theoretical equation.
Algebraic model for the mixing length
For local equilibrium, an extension of von Kármán’s similarity hypothesis allows to write, with equation (4) [Absi (2006)]:
(5) |
, is the hydrodynamic roughness. For a smooth wall ():
(6) |
the algebraic eddy viscosity model is therefore
(7) |
The mean velocity profile
For local equilibrium, we are able to find the mean velocity profile from the turbulent kinetic energy (equation 4) and the mixing length (equation 5), by:
(8) |
Figure (1) shows that the velocity profile obtained from equations (8), (4) and (5) (solid line) is more accurate than the logarithmic velocity profile (dash-dotted line).
Figure 1, Vertical distribution of mean flow velocity. ; ; Dash-dotted line: logarithmic profile; solid line: obtained from equation (8); symbols: experimental data ([Sukhodolov et al. (1998)]). a) profile 2: ; ; . b) profile 4: ; ; ; (values of are from [Sukhodolov et al. (1998)]); Figure from [Absi (2006)].
References
- Absi, R. (2006), "A roughness and time dependent mixing length equation", Journal of Hydraulic, Coastal and Environmental Engineering, (Doboku Gakkai Ronbunshuu B), Japan Society of Civil Engineers, Vol. 62, No. 4, pp.437-446.
- Nezu, I. and Nakagawa, H. (1993), "Turbulence in open-channel flows", A.A. Balkema, Ed. Rotterdam, The Netherlands.
- Sukhodolov, A., Thiele, M. and Bungartz, H. (1998), "Turbulence structure in a river reach with sand bed", Water Resour. Res., Vol. 34, pp. 1317-1334.