CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Wiki > Velocity-pressure coupling

Velocity-pressure coupling

From CFD-Wiki

(Difference between revisions)
Jump to: navigation, search
 
(8 intermediate revisions not shown)
Line 1: Line 1:
 +
If we consider the discretised form of the Navier-Stokes system, the form of the equations shows linear dependence of velocity on pressure and vice-versa. This inter-equation coupling is called velocity pressure coupling. A special treatment is required in order to velocity-pressure coupling. The methods such as: <br>
 +
# SIMPLE
 +
# SIMPLER
 +
# SIMPLEC
 +
# PISO
 +
provide an useful means of doing this for segregated solvers. However it is possible to solve the system of Navier-Stokes equations in coupled manner, taking care of inter equation coupling in a single matrix.
-
If we consider the discretised form of the Navier-Stokes system, the form of the equations shows linear dependence of velocity on pressure and vice-versa. This inter-equation coupling is called pressure-velocity coupling.
+
==Formulation==
 +
we have at each cell descretised equation in this form, <br>
 +
:<math> a_p \vec v_P  = \sum\limits_{neighbours} {a_l } \vec v_l  - \frac{{\nabla p}}{V} </math> ;  Where V = Volume of cell.<br>
 +
According to [[Rhie-Chow interpolation]], we have <br>
 +
:<math> \vec v_P  = \frac{{\sum\limits_{neighbours} {a_l } \vec v_l }}{{a_p }} - \frac{{\nabla p}}{{a_p V}} </math> <br>
 +
 
 +
For continuity : <br>
 +
:<math> \sum\limits_{faces} {\vec v_f  \bullet \vec A}  = 0 </math> <br>
 +
so we get: <br>
 +
:<math> \sum\limits_{faces}  \left[ {\frac{{\sum\limits_{neighbours} {a_l } \vec v_l }}{{a_p }}} \right]_{face}  - \sum\limits_{faces} \left[ {\frac{{\nabla p}}{{a_p V}}} \right]_{face}  = 0 </math> <br>
 +
this gives us: <br>
 +
:<math> \sum\limits_{faces} \left[ {\frac{{\sum\limits_{neighbours} {a_l } \vec v_l }}{{a_p }}} \right]_{face}  = \sum\limits_{faces} \left[ {\frac{{\nabla p}}{{a_p V}}} \right]_{face} </math><br>
 +
defining <math> H = \sum\limits_{neighbours} {a_l } \vec v_l </math> <br>
 +
:<math> \sum\limits_{faces} \left[ {\frac{1}{{a_p }}H} \right]_{face}  = \sum\limits_{faces} \left[ {\frac{1}{{a_p }}\frac{{\nabla p}}{V}} \right]_{face} </math> <br>
 +
from this a pressure correction equation could be formed as: <br>
 +
:<math> \sum\limits_{faces} \left[ {\frac{1}{{a_p }}H} \right]_{face}  - \sum\limits_{faces} \left[ {\frac{1}{{a_p }}\frac{{\nabla p^* }}{V}} \right]_{face}  = \sum\limits_{faces} \left[ {\frac{1}{{a_p }}\frac{{\nabla p^' }}{V}} \right]_{face}  </math> <br>
 +
This is a poisson equation.
 +
 
 +
Here the gradients could be used from previous iteration.
 +
 
 +
 
 +
==SIMPLE==
 +
See [[SIMPLE algorithm]]
 +
== SIMPLER==
 +
See [[SIMPLER algorithm]]
 +
 
 +
== SIMPLEC==
 +
See [[SIMPLEC algorithm]]
 +
 
 +
== PISO ==
 +
See [[PISO algorithm]]
 +
 
 +
 
 +
----
 +
<i> Return to: <br>
 +
# [[Numerical methods | Numerical Methods]]
 +
# [[Solution of Navier-Stokes equation]]
 +
</i>

Latest revision as of 05:50, 24 October 2005

If we consider the discretised form of the Navier-Stokes system, the form of the equations shows linear dependence of velocity on pressure and vice-versa. This inter-equation coupling is called velocity pressure coupling. A special treatment is required in order to velocity-pressure coupling. The methods such as:

  1. SIMPLE
  2. SIMPLER
  3. SIMPLEC
  4. PISO

provide an useful means of doing this for segregated solvers. However it is possible to solve the system of Navier-Stokes equations in coupled manner, taking care of inter equation coupling in a single matrix.

Contents

Formulation

we have at each cell descretised equation in this form,

 a_p \vec v_P  = \sum\limits_{neighbours} {a_l } \vec v_l  - \frac{{\nabla p}}{V}  ; Where V = Volume of cell.

According to Rhie-Chow interpolation, we have

 \vec v_P  = \frac{{\sum\limits_{neighbours} {a_l } \vec v_l }}{{a_p }} - \frac{{\nabla p}}{{a_p V}}

For continuity :

 \sum\limits_{faces} {\vec v_f  \bullet \vec A}  = 0

so we get:

 \sum\limits_{faces}  \left[ {\frac{{\sum\limits_{neighbours} {a_l } \vec v_l }}{{a_p }}} \right]_{face}  - \sum\limits_{faces} \left[ {\frac{{\nabla p}}{{a_p V}}} \right]_{face}  = 0

this gives us:

 \sum\limits_{faces} \left[ {\frac{{\sum\limits_{neighbours} {a_l } \vec v_l }}{{a_p }}} \right]_{face}  = \sum\limits_{faces} \left[ {\frac{{\nabla p}}{{a_p V}}} \right]_{face}

defining  H = \sum\limits_{neighbours} {a_l } \vec v_l

 \sum\limits_{faces} \left[ {\frac{1}{{a_p }}H} \right]_{face}  = \sum\limits_{faces} \left[ {\frac{1}{{a_p }}\frac{{\nabla p}}{V}} \right]_{face}

from this a pressure correction equation could be formed as:

 \sum\limits_{faces} \left[ {\frac{1}{{a_p }}H} \right]_{face}  - \sum\limits_{faces} \left[ {\frac{1}{{a_p }}\frac{{\nabla p^* }}{V}} \right]_{face}  = \sum\limits_{faces} \left[ {\frac{1}{{a_p }}\frac{{\nabla p^' }}{V}} \right]_{face}

This is a poisson equation.

Here the gradients could be used from previous iteration.


SIMPLE

See SIMPLE algorithm

SIMPLER

See SIMPLER algorithm

SIMPLEC

See SIMPLEC algorithm

PISO

See PISO algorithm



Return to:

  1. Numerical Methods
  2. Solution of Navier-Stokes equation

My wiki