CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Wiki > Structural modeling

Structural modeling

From CFD-Wiki

(Difference between revisions)
Jump to: navigation, search
 
(2 intermediate revisions not shown)
Line 30: Line 30:
\tau_{ij} = 2k_{sgs} \left(\frac{G_{ij}}{G_{kk}}\right)
\tau_{ij} = 2k_{sgs} \left(\frac{G_{ij}}{G_{kk}}\right)
</math>
</math>
 +
The transport equation for the SGS kinetic energy can be used to close the model (Pomraning and Rutland, 2002; Lu et. al., 2008)
 +
:<math> \frac{\partial k_{sgs}}{\partial t} + \frac{\partial \overline u_{j} k_{sgs}} {\partial x_{j}} = - \tau_{ij} \frac{\partial \overline u_{i}}{\partial x_{j}}    - C_{\varepsilon} \frac{k_{sgs}^{3/2}}{\Delta} + \frac{\partial}{\partial x_{j}} \left( \nu_t \frac{\partial k_{sgs}}{\partial x_{j}}  \right)
 +
</math>
 +
or use a zero-equation procedure (Lu and Porte-Agel, 2010) to estimate the SGS kinetic energy.
== References ==
== References ==

Latest revision as of 20:10, 27 June 2013

1. Those that use the physical hypothesis of scale similarity (Bardina et. al., 1980)


\tau_{ij} = L_{ij} = \widetilde{\bar{u}_i} \widetilde{\bar{u}_j} - \widetilde{\bar{u}_i \bar{u}_j}


2. Those derived by formal series expansions (Clark et. al., 1979)


\tau_{ij} = G_{ij} = \frac{\Delta^2}{12} \frac{\partial \bar{u}_i}{\partial x_{k}} \frac{\partial \bar{u}_j}{\partial x_{k}}

3. Mixed models, which are based on linear combinations of the eddy-viscosity and structural types


\tau_{ij} = G_{ij}-2\nu_{sgs} S_{ij}

or


\tau_{ij} = L_{ij}-2\nu_{sgs} S_{ij}

4. Dynamic structure models, which divide the modeled SGS stress into a model for the SGS kinetic energy and a model for the structure of the SGS stress tensor (relative weights of each of the components) (Pomraning and Rutland, 2002; Lu et. al. 2007, 2008; Lu and Porte-Agel, 2010)


\tau_{ij} = 2k_{sgs} \left(\frac{L_{ij}}{L_{kk}}\right)

or


\tau_{ij} = 2k_{sgs} \left(\frac{G_{ij}}{G_{kk}}\right)

The transport equation for the SGS kinetic energy can be used to close the model (Pomraning and Rutland, 2002; Lu et. al., 2008)

 \frac{\partial k_{sgs}}{\partial t} + \frac{\partial \overline u_{j} k_{sgs}} {\partial x_{j}} = - \tau_{ij} \frac{\partial \overline u_{i}}{\partial x_{j}}     - C_{\varepsilon} \frac{k_{sgs}^{3/2}}{\Delta} + \frac{\partial}{\partial x_{j}} \left( \nu_t \frac{\partial k_{sgs}}{\partial x_{j}}  \right)

or use a zero-equation procedure (Lu and Porte-Agel, 2010) to estimate the SGS kinetic energy.

References

  • J. Bardina and J. H. Ferziger and W. C. Reynolds (1980), "Improved subgrid scale models for large eddy simulation", AIAA Paper No. 80-1357.
  • R. A. Clark and J. H. Ferziger and W. C. Reynolds (1979), "Evaluation of subgrid-scale models using an accurately simulated turbulent flow", J. Fluid Mech..
  • E. Pomraning and C. J. Rutland (2002), "Dynamic one-equation nonviscosity large-eddy simulation model", AIAA J..
  • H. Lu and C. J. Rutland and L. M. Smith (2007), "A priori tests of one-equation LES modeling of rotating turbulence", J. Turbul..
  • H. Lu and C. J. Rutland and L. M. Smith (2008), "A posteriori tests of one-equation LES modeling of rotating turbulence", Int. J. Mod. Phys. C.
  • H. Lu and F. Porte-Agel (2010), "A modulated gradient model for large-eddy simulation: application to a neutral atmospheric boundary layer", Phys. Fluids.
My wiki