CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Wiki > Arbitrary polyhedral volume

Arbitrary polyhedral volume

From CFD-Wiki

(Difference between revisions)
Jump to: navigation, search
m (Arbitrary Polyhedral Volume moved to Arbitrary polyhedral volume)
 
(One intermediate revision not shown)
Line 1: Line 1:
-
== Arbitrary Polyhedral Volume ==
 
-
 
The volume of arbitrary polyhedral can be calculated by using [[Greens theorem | Green-Gauss Theorem]].
The volume of arbitrary polyhedral can be calculated by using [[Greens theorem | Green-Gauss Theorem]].
Line 38: Line 36:
where S is magnitude of Surface Area.
where S is magnitude of Surface Area.
 +
 +
 +
----
 +
<i> Return to [[Numerical methods | Numerical Methods]] </i>

Latest revision as of 06:18, 3 October 2005

The volume of arbitrary polyhedral can be calculated by using Green-Gauss Theorem.

\int\limits_\Omega  {div(\vec F)d\Omega  = } \oint\limits_S {\vec F \bullet d\vec S}

By choosing the function


\vec F = \frac{{\left( {x\hat i + y\hat j + z\hat k} \right)}}{3}

Where (x,y,z) are centroid of the surface enclosing the volume under consideration. As we have,


div(\vec F) = 1

Hence the volume can be calculated as:


volume = \oint\limits_S {\vec F \bullet \hat ndS}

where the normal of the surface pointing outwards is given by:


\hat n = (n_x \hat i + n_y \hat j + n_z \hat k)

Final expression could be written as


volume = \frac{1}{3}\sum\limits_{faces} {\left[ {\left( {x \times n_x  + y \times n_y  + z \times n_z } \right) \bullet S} \right]}

where S is magnitude of Surface Area.



Return to Numerical Methods

My wiki