2-D vortex in isentropic flow
From CFD-Wiki
(Difference between revisions)
Roberthealy1 (Talk | contribs) m (Provided interlinks between this page and other pages (many may require creation)) |
Roberthealy1 (Talk | contribs) m (I think that this article may qualify as a stub, as it represents a POV; "one choice". An explanation of what the test is and what it can be used for would be worthwhile) |
||
Line 30: | Line 30: | ||
</math> | </math> | ||
- | is distance from the [[vortex]] center <math>(x_o, y_o)</math>. One choice for the domain | + | is distance from the [[vortex]] center <math>(x_o, y_o)</math>. |
- | and parameters | + | |
+ | One choice for the domain and parameters is: | ||
:<math> | :<math> | ||
Line 45: | Line 46: | ||
*{{reference-paper | author=Yee, H-C., Sandham, N. and Djomehri, M., | year=1999 | title=Low dissipative high order shock-capturing methods using characteristic-based filters| rest=JCP, Vol. 150}} | *{{reference-paper | author=Yee, H-C., Sandham, N. and Djomehri, M., | year=1999 | title=Low dissipative high order shock-capturing methods using characteristic-based filters| rest=JCP, Vol. 150}} | ||
+ | |||
+ | |||
+ | {{stub}} |
Revision as of 18:45, 13 August 2007
The test case involves convection of an isentropic vortex in inviscid flow. The free-stream conditions are
Perturbations are added to the free-stream in such a way that there is no entropy gradient in the flow-field. The perturbations are given by
where
is distance from the vortex center .
One choice for the domain and parameters is:
As a result of isentropy, the exact solution corresponds to a pure advection of the vortex at the free-stream velocity. Further details can be found in Yee et al. (1999).
References
- Yee, H-C., Sandham, N. and Djomehri, M., (1999), "Low dissipative high order shock-capturing methods using characteristic-based filters", JCP, Vol. 150.