Kinetic energy subgrid-scale model
From CFD-Wiki
(Difference between revisions)
m |
|||
Line 4: | Line 4: | ||
The subgrid-scale stress can then be written as <br> | The subgrid-scale stress can then be written as <br> | ||
- | <math> \tau_{ij} - \frac{2}{3} k_{\rm sgs} \delta_{ij} =-2 C_k k_{\rm sgs}^{1/2} \ | + | <math> \tau_{ij} - \frac{2}{3} k_{\rm sgs} \delta_{ij} =-2 C_k k_{\rm sgs}^{1/2} \Delta \overline{S}_{ij} </math> <br> |
this gives us the transport equation for subgrid-scale kinetic energy <br> | this gives us the transport equation for subgrid-scale kinetic energy <br> | ||
- | <math> \frac{\partial \overline k_{\rm sgs}}{\partial t} + \frac{\partial \overline u_{j} \overline k_{sgs}} {\partial x_{j}} = - \tau_{ij} \frac{\partial \overline u_{i}}{\partial x_{j}} - C_{\varepsilon} \frac{k_{\rm sgs}^{3/2}}{\ | + | <math> \frac{\partial \overline k_{\rm sgs}}{\partial t} + \frac{\partial \overline u_{j} \overline k_{sgs}} {\partial x_{j}} = - \tau_{ij} \frac{\partial \overline u_{i}}{\partial x_{j}} - C_{\varepsilon} \frac{k_{\rm sgs}^{3/2}}{\Delta} + \frac{\partial}{\partial x_{j}} \left( \frac{\mu_t}{\sigma_k} \frac{\partial k_{\rm sgs}}{\partial x_{j}} \right) </math> |
Line 13: | Line 13: | ||
- | <math> \mu_{t} = C_k k_{\rm sgs}^{1/2} \ | + | <math> \mu_{t} = C_k k_{\rm sgs}^{1/2} \Delta </math> |
- | + | ||
- | + | ||
- | + |
Revision as of 12:21, 8 May 2006
The subgrid-scale kinetic energy is defined as
The subgrid-scale stress can then be written as
this gives us the transport equation for subgrid-scale kinetic energy
The subgrid-scale eddy viscosity,, is computed using as