Turbulence length scale
From CFD-Wiki
m (spelling corrections) |
m |
||
Line 11: | Line 11: | ||
==Estimating the turbulent length-scale== | ==Estimating the turbulent length-scale== | ||
- | It is common to set the turbulent length-scale to a certain percentage of a typical dimension of the problem. For example, at the inlet to a turbine stage a typical turbulent length-scale could be say 5% of the channel height. In grid-generated turbulence the turbulent length-scale is often set to something close to the size of the grid bars. In pipe-flows the turbulent length-scale can be estimated from the [[hydraulic diameter]]. In fully developed pipe-flow the turbulent length-scale is 7% of the hydraulic diamater (in the case of a circular pipe the hydraulic diameter is the same as the diameter of the pipe) | + | It is common to set the turbulent length-scale to a certain percentage of a typical dimension of the problem. For example, at the inlet to a turbine stage a typical turbulent length-scale could be say 5% of the channel height. In grid-generated turbulence the turbulent length-scale is often set to something close to the size of the grid bars. In pipe-flows the turbulent length-scale can be estimated from the [[hydraulic diameter]]. In fully developed pipe-flow the turbulent length-scale is 7% of the [[hydraulic diamater]] (in the case of a circular pipe the [[hydraulic diameter]] is the same as the diameter of the pipe) |
Revision as of 14:01, 24 March 2006
The turbulence length-scale, , is a physical quantity describing the size of the large energy containing eddies in a turbulent flow.
The turbulent length-scale is often used to estimate the turbulent properties on the inlets of a CFD simulation. Since the turbulent length-scale is a quantity which is intuitively easy to relate to the physical size of the problem it is easy to guess a reasonable value of the turbulent length-scale. The turbulent length-scale should normally not be larger than the dimension of the problem, since that would mean that the turbulent eddies are larger than the problem size.
In the k-epsilon model the turbulent length-scale can be computed as:
is a model constant which in the standard version of the k-epsilon model has a value of 0.09.
Estimating the turbulent length-scale
It is common to set the turbulent length-scale to a certain percentage of a typical dimension of the problem. For example, at the inlet to a turbine stage a typical turbulent length-scale could be say 5% of the channel height. In grid-generated turbulence the turbulent length-scale is often set to something close to the size of the grid bars. In pipe-flows the turbulent length-scale can be estimated from the hydraulic diameter. In fully developed pipe-flow the turbulent length-scale is 7% of the hydraulic diamater (in the case of a circular pipe the hydraulic diameter is the same as the diameter of the pipe)