CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Wiki > Other Schemes (unclassified) - structured grids

Other Schemes (unclassified) - structured grids

From CFD-Wiki

(Difference between revisions)
Jump to: navigation, search
(HLPA - Hybrid Linear / Parabolic Approximation)
(HLPA - Hybrid Linear / Parabolic Approximation)
Line 150: Line 150:
<table width="100%"><tr><td>
<table width="100%"><tr><td>
:<math>  
:<math>  
-
a_{w} = 0  
+
\boldsymbol{a_{w} = 0
</math>
</math>
</td><td width="5%">(2)</td></tr></table>
</td><td width="5%">(2)</td></tr></table>

Revision as of 18:29, 19 October 2005

Contents

Chakravarthy-Osher limiter

Sweby \Phi - limiter

Superbee limiter

R-k limiter

MINMOD - MINimum MODulus

Harten A. High resolution schemes using flux limiters for hyperbolic conservation laws. Journal of Computational Physics 1983; 49: 357-393

A. Harten

High Resolution Schemes for Hyperbolic Conservation Laws

J. Comp. Phys., vol. 49, no. 3, pp. 225-232, 1991

NM convectionschemes struct grids MINMOD probe 01.jpg

SOUCUP - Second-Order Upwind Central differnce-first order UPwind

Zhu J. (1992), "On the higher-order bounded discretization schemes for finite volume computations of incompressible flows", Computational Methods in Applied Mechanics and Engineering. 98. 345-360.

J. Zhu, W.Rodi (1991), "A low dispersion and bounded convection scheme", Comp. Meth. Appl. Mech.&Engng, Vol. 92, p 225.


NM convectionschemes struct grids Schemes SOUCUP Probe 01.jpg

Normalized variables - uniform grids

 
\hat{\phi_{f}}=  
\begin{cases}
\frac{3}{2} \hat{\phi_{C}}               &  0          \leq \hat{\phi_{C}} \leq \frac{1}{2} \\ 
\frac{1}{2} + \frac{1}{2} \hat{\phi_{C}} & \frac{1}{2} \leq \hat{\phi_{C}} \leq 1           \\
\hat{\phi_{C}}                           & \hat{\phi_{C}} \triangleleft 0 \ , \ \hat{\phi_{C}} \triangleright 1
\end{cases}
(2)

Normalized variables - non-uniform grids

 
\hat{\phi_{f}}=  
\begin{cases}
a_{f}+ b_{f} \hat{\phi_{C}}   &  0    \leq \hat{\phi_{C}} \leq x_{Q} \\ 
c_{f}+ d_{f} \hat{\phi_{C}}   & x_{Q}  \leq \hat{\phi_{C}}\leq 1     \\
\hat{\phi_{C}} & \hat{\phi_{C}} \triangleleft 0 \ , \ \hat{\phi_{C}} \triangleright 1
\end{cases}
(2)

where


\boldsymbol{a_{f}= 0}
(2)
 
\boldsymbol{b_{f}= y_{Q}/x_{Q} }
(2)
 
c_{f}= \left( x_{Q} - y_{Q} \right)/\left( 1 - x_{Q} \right)
(2)
 
d_{f} = \left( 1 - y_{Q} \right) / \left( 1 - x_{Q} \right)
(2)

ISNAS - Interpolation Scheme which is Nonoscillatory for Advected Scalars

Third-order flux-limiter scheme

M. Zijlema , On the construction of a third-order accurate monotone convection scheme with application to turbulent flows in general domains. International Journal for numerical methods in fluids, 22:619-641, 1996.



COPLA - COmbination of Piecewise Linear Approximation

Seok Ki Choi, Ho Yun Nam, Mann Cho

Evaluation of a High-Order Bounded Convection Scheme: Three-Dimensional Numerical Experiments

Numerical Heat Transfer, Part B, 28:23-38, 1995

HLPA - Hybrid Linear / Parabolic Approximation

Zhu J. Low Diffusive and oscillation-free convection scheme // Communications and Applied Numerical Methods. 1991. 7, N3. 225-232.

Zhu J., Rodi W. A low dispersion and bounded discretization schemes for finite volume computations of incompressible flows // Computational Methods for Applied Mechanics and Engineering. 1991. 92. 87-96




In this scheme, the normalized face value is approximated by a combination of linear and parabolic charachteristics passing through the points, O, Q, and P in the NVD. It satisfies TVD condition and is second-order accurate

Usual variables

 
f_{w}= 
\begin{cases}
f_{w} + \left( f_{P} -  f_{W} \right) \hat{f_{C}} & 0 \leq \hat{f_{C}} \leq 1 \\ 
f_{W} & \hat{f_{C}} \triangleleft 0 \ , \ \hat{f_{C}} \triangleright 1
\end{cases}
(2)

Normalized variables - uniform grids

 
\hat{f_{w}}=  
\begin{cases}
\hat{f_{C}} \left( 2 -  \hat{f_{C}} \right) \hat{f_{C}} & 0 \leq \hat{f_{C}} \leq 1 \\ 
\hat{f_{C}} & \hat{f_{C}} \triangleleft 0 \ , \ \hat{f_{C}} \triangleright 1
\end{cases}
(2)

Normalized variables - non-uniform grids

 
\hat{f_{w}}= 
\begin{cases}
a_{w} + b_{w} \hat{f_{C}} + c_{w} \hat{f_{C}}^{2} & 0 \leq \hat{f_{C}} \leq 1 \\ 
\hat{f_{C}} & \hat{f_{C}} \triangleleft 0 \ , \ \hat{f_{C}} \triangleright 1
\end{cases}
(2)

where

 
\boldsymbol{a_{w} = 0 }
(2)
 
b_{w} = \left(y_{Q}- x^{2}_{Q} \right) /  \left(x_{Q}- x^{2}_{Q} \right)
(2)


 
c_{w} = \left(y_{Q}- x_{Q} \right) /  \left(x_{Q}- x^{2}_{Q} \right)  ,
(2)

Implementation

Using the switch factors:

for \boldsymbol{U_w \geq 0}

 
\alpha^{+}_{w} =  
\begin{cases}
1 & \ if \ | \phi_{P} - 2 \phi_{W} + \phi_{WW}| \triangleleft | \phi_{P} - \phi_{WW} | \\
0 & otherwise 
\end{cases}
(2)

for \boldsymbol{U_w \triangleleft  0}

 
\alpha^{-}_{w} =  
\begin{cases}
1 & \ if \ | \phi_{W} - 2 \phi_{P} + \phi_{E}| \triangleleft | \phi_{W} - \phi_{E} | \\
0 & otherwise 
\end{cases}
(2)

and taken all the possible flow directions into account, the un-normalized form of equation can be written as

 
\phi_{w} = U^{+}_{w} \phi_{W} + U^{-}_{w} \phi_{P} + \Delta \phi_{w}
(2)

where

 
\Delta \phi_{w} = U^{+}_{w} \alpha^{+}_{w} \left( \phi_{P} - \phi_{W} \right) \frac{\phi_{W} - \phi_{WW}}{\phi_{P} - \phi_{WW}} + U^{-}_{w} \alpha^{-}_{w} \left( \phi_{W} - \phi_{P} \right) \frac{\phi_{P} - \phi_{E}}{\phi_{W} - \phi_{E}}
(2)
 
 U^{+}_{w} = 0.5 \left( 1 + \left| U_{w} \right| / U_{w} \right) \ , \ U^{-}_{w} = 1 - U^{+}_{w} \ \ \left( U_{w}\neq 0 \right)
(2)

NM convectionschemes struct grids Schemes HLPA Probe 01.jpg

CLAM - Curved-Line Advection Method

Van Leer B. , Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme. Journal of Computational Physics 1974; 14:361-370


van Leer harmonic

BSOU

G. Papadakis, G. Bergeles.

A locally modified second order upwind scheme for convection terms discretization.

Int. J. Numer. Meth. Heat Fluid Flow, 5.49-62, 1995

MSOU - Monotonic Second Order Upwind Differencing Scheme

Sweby

Koren

bounded CUS

B. Koren

A robust upwind discretisation method for advection, diffusion and source terms

In: Numerical Mthods for Advection-Diffusion Problems, Ed. C.B.Vreugdenhil& B.Koren, Vieweg, Braunscheweigh, p.117, (1993)

H-CUS

bounded CUS

N.P.Waterson H.Deconinck

A unified approach to the design and application of bounded high-order convection schemes

VKI-preprint, 1995-21, (1995)

MLU

B. Noll

Evaluation of a bounded high-resolution scheme for combustor flow computations

AIAA J., vol. 30, No. 1, p.64 (1992)

SHARP - Simple High Accuracy Resolution Program

B.P.Leonard, Simple high-accuracy resolution rogram for convective modelling of discontinuities, International J. Numerical Methods Fluids 8 (1988) 1291-1381

LPPA - Linear and Piecewise / Parabolic Approximasion

Normalized variables - uniform grids

 
\hat{\phi_{f}}=  
\begin{cases}
\frac{9}{4}{\phi}_{C} - \frac{3}{2} {\phi}^{2}_{C} &  0 \leq \hat{\phi}_{C} \leq \frac{1}{2} \\ 
\frac{1}{4}+\frac{5}{4}{\phi}_{C}-\frac{1}{2}{\phi}^{2}_{C} & \frac{1}{2} \leq \hat{\phi}_{C} \leq 1 \\
\hat{\phi}_{C} & \hat{\phi}_{C} \triangleleft 0 \ , \ \hat{\phi}_{C} \triangleright 1
\end{cases}
(2)

Normalized variables - non-uniform grids

 
\hat{\phi_{f}}=  
\begin{cases}
a_{f}+ b_{f} \hat{\phi}_{C} + c_{f}\hat{\phi}^{2}_{C} & 0    \leq \hat{\phi_{C}} \leq x_{Q} \\ 
d_{f}+ d_{f} \hat{\phi}_{C} + f_{f}\hat{\phi}^{2}_{C} & x_{Q} \leq \hat{\phi_{C}} \leq 1      \\
\hat{\phi_{C}} & \hat{\phi_{C}} \triangleleft 0 \ , \ \hat{\phi_{C}} \triangleright 1
\end{cases}
(2)

where


\boldsymbol{a_{f}= 0}
(2)
 
b_{f}= \left( s_{Q}x^{2}_{Q} + 2x_{Q}y_{Q} \right) /  x^{2}_{Q}
(2)
 
c_{f}= \left( s_{Q}x_{Q} - y_{Q} \right)/ x^{2}_{Q}
(2)
 
d_{f} = \left[ x^{2}_{Q} + s_{Q} \left( x^{2}_{Q} - x_{Q} \right)+ \left( 1 - 2 x_{Q} \right) \right] / \left( 1 - x_{Q} \right)^{2}
(2)
 
e_{f} = \left[ -2 x_{Q} + s_{Q} \left( 1 - x^{2}_{Q} \right) + 2 x_{Q} y_{Q} \right] / \left( 1 - x_{Q} \right)^{2}
(2)
 
f_{f} = \left[ 1 + s_{Q} \left( x_{Q} - 1 \right) - 2 y_{Q} \right] / \left( 1 - x_{Q} \right)^{2}
(2)

GAMMA

CUBISTA - Convergent and Universally Bounded Interpolation Scheme for the Treatment of Advection

M.A. Alves, P.J.Oliveira, F.T. Pinho, A convergent and Universally Bounded Interpolation Scheme for the Treatment of Advection // International Lournal For Numerical Methods in Fluids 2003, 41; 47-75



Return to Numerical Methods

Return to Approximation Schemes for convective term - structured grids

My wiki