SST k-omega model
From CFD-Wiki
(Difference between revisions)
(→Closure Coefficients and Auxilary Relations) |
(→Closure Coefficients and Auxilary Relations) |
||
Line 17: | Line 17: | ||
:<math> | :<math> | ||
- | + | F_2=\mbox{tanh} \left[ \left[ \mbox{max} \left( { 2 \sqrt{k} \over \beta^* \omega y } , { 500 \nu \over y^2 \omega } \right) \right]^2 \right] | |
</math> | </math> | ||
:<math> | :<math> | ||
- | + | P_k=\mbox{min} \left(\tau _{ij} {{\partial U_i } \over {\partial x_j }} , 20\beta^* k \omega \right) | |
</math> | </math> | ||
:<math> | :<math> | ||
- | + | F_1=\mbox{tanh} \left\{ \left\{ \mbox{min} \left[ \mbox{max} \left( {\sqrt{k} \over \beta ^* \omega y}, {500 \nu \over y^2 \omega} \right) , {4 \sigma_{\omega 2} k \over CD_{k\omega} y^2} \right] \right\} ^4 \right\} | |
</math> | </math> | ||
- | |||
:<math> | :<math> | ||
- | + | CD_{k\omega}=\mbox{max} \left( 2\rho\sigma_{\omega 2} {1 \over \omega} {{\partial k} \over {\partial x_i}} {{\partial \omega} \over {\partial x_i}}, 10 ^{-10} \right ) | |
</math> | </math> | ||
Line 47: | Line 46: | ||
:<math> | :<math> | ||
- | \ | + | \sigma_{k1} = 0.85 |
+ | </math> | ||
+ | |||
+ | :<math> | ||
+ | \sigma_{k2} = 1 | ||
</math> | </math> | ||
:<math> | :<math> | ||
- | \ | + | \sigma_{\omega 1} = 0.5 |
</math> | </math> | ||
:<math> | :<math> | ||
- | \ | + | \sigma_{\omega 2} = 0.856 |
</math> | </math> | ||
Revision as of 08:11, 11 October 2005
Contents |
Kinematic Eddy Viscosity
Turbulence Kinetic Energy
Specific Dissipation Rate
Closure Coefficients and Auxilary Relations
References
- Wilcox, D.C. (1988), "Re-assessment of the scale-determining equation for advanced turbulence models", AIAA Journal, vol. 31, pp. 1414-1421.