CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Wiki > Biconjugate gradient stabilized method

Biconjugate gradient stabilized method

From CFD-Wiki

(Difference between revisions)
Jump to: navigation, search
Line 43: Line 43:
=== Reference ===
=== Reference ===
#'''Richard Barret, Michael Berry, Tony F. Chan, James Demmel, June M. Donato, Jack Dongarra, Victor Eijihout, Roldan Pozo, Charles Romine, Henk Van der Vorst''', "Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods"
#'''Richard Barret, Michael Berry, Tony F. Chan, James Demmel, June M. Donato, Jack Dongarra, Victor Eijihout, Roldan Pozo, Charles Romine, Henk Van der Vorst''', "Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods"
 +
 +
 +
----
 +
<i> Return to [[Numerical methods | Numerical Methods]] </i>

Revision as of 06:26, 3 October 2005

Contents

Biconjugate gradient stabilized method

Biconjugate gradient stabilized method could be summarized as follows

System of equation

For the given system of equation
Ax = b ;
b = source vector
x = solution variable for which we seek the solution
A = coefficient matrix

M = the precondioning matrix constructued by matrix A


Algorithm


Allocate temperary vectors p, phat, s, shat, t, v, rtilde
Allocate temerary reals rho_1, rho_2 , alpha, beta, omega

r := b - A\bulletx
rtilde = r

for i := 1 step 1 until max_itr do
rho_1 = rtilde\bulletr
if i = 1 then p := r else
beta = (rho_1/rho_2) * (alpha/omega)
p = r + beta * (p - omega * v)
end if
solve (M\bulletphat = p )
v = A\bulletphat
alpha = rho_1 / (rtilde\bulletv)
s = r - alpha * v
solve (M\bulletshat = s )
t = A * shat;
omega = (t\bullets) / (t\bullett)
x = x + alpha * phat + omega * shat
r = s - omega * t
rho_2 = rho_1
end (i-loop)

deallocate all temp memory
return TRUE

Reference

  1. Richard Barret, Michael Berry, Tony F. Chan, James Demmel, June M. Donato, Jack Dongarra, Victor Eijihout, Roldan Pozo, Charles Romine, Henk Van der Vorst, "Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods"



Return to Numerical Methods

My wiki