CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Wiki > Prandtl's one-equation model

Prandtl's one-equation model

From CFD-Wiki

(Difference between revisions)
Jump to: navigation, search
Line 22: Line 22:
   \sigma _k  = 1
   \sigma _k  = 1
</math> <br>
</math> <br>
 +
 +
 +
where <br>
 +
:<math>
 +
\tau _{ij}  = 2\nu _T S_{ij}  - {2 \over 3}k\delta _{ij}
 +
</math>
== References ==
== References ==
#{{reference-book|author=Wilcox, D.C. |year=2004|title=Turbulence Modeling for CFD|rest=ISBN 1-928729-10-X, 2nd Ed., DCW Industries, Inc.}}
#{{reference-book|author=Wilcox, D.C. |year=2004|title=Turbulence Modeling for CFD|rest=ISBN 1-928729-10-X, 2nd Ed., DCW Industries, Inc.}}

Revision as of 09:34, 26 September 2005

Contents

Kinematic Eddy Viscosity

 
\nu _t  = k^{{1 \over 2}} l = C_D {{k^2 } \over \varepsilon }

Model


{{\partial k} \over {\partial t}} = U_j {{\partial k} \over {\partial x_j }} = \tau _{ij} {{\partial U_i } \over {\partial x_j }} - C_D {{k^{{3 \over 2}} } \over l} + {\partial  \over {\partial x_j }}\left[ {\left( {\nu  + {{\nu _T } \over {\sigma _k }}} \right){{\partial k} \over {\partial x_j }}} \right]


Closure Coefficients and Auxilary Relations


 \varepsilon  = C_D {{k^{{3 \over 2}} } \over l}

    C_D  = 0.3

   \sigma _k  = 1


where


\tau _{ij}  = 2\nu _T S_{ij}  - {2 \over 3}k\delta _{ij}

References

  1. Wilcox, D.C. (2004), Turbulence Modeling for CFD, ISBN 1-928729-10-X, 2nd Ed., DCW Industries, Inc..
My wiki