Turbulence boundary conditions
From CFD-Wiki
(11 intermediate revisions not shown) | |||
Line 7: | Line 7: | ||
For fully developed turbulent pipe flow the turbulence inlet properties can be estimated using the model presented by Basse in Table 1 of [1]. | For fully developed turbulent pipe flow the turbulence inlet properties can be estimated using the model presented by Basse in Table 1 of [1]. | ||
- | : | + | Turbulence Intensity: |
- | :<math>I_{AA} = \sqrt{\left[ B_g + \frac{3}{2} A_g - \frac{8 C_g}{\sqrt | + | :<math>I_{AA} = \sqrt{\left[ B_g + \frac{3}{2} A_g - \frac{8 C_g}{3 \sqrt{Re_\tau}}\right] \times \frac{f}{8}}</math> |
- | + | Turbulence Length-Scale: | |
- | < | + | :<math>L_{AA} = 0.14 \; \kappa_g \times \delta</math> |
+ | Turbulence Energy: | ||
:<math>k_{AA} = U_m^2 \; I_{AA}^2</math> | :<math>k_{AA} = U_m^2 \; I_{AA}^2</math> | ||
- | :<math>\epsilon_{AA} = C_{\mu,AA}^\frac{3}{4} \times \frac{k_{AA}^\frac{3}{2}}{ | + | Turbulence Dissipation: |
- | + | :<math>\epsilon_{AA} = C_{\mu,AA}^\frac{3}{4} \times \frac{k_{AA}^\frac{3}{2}}{L_{AA}}</math> | |
The subscript <math>AA</math> here denotes an area-averaged value. The model parameters <math>\kappa_g</math>, <math>A_g</math>, <math>B_g</math> and <math>C_g</math> can be computed using the following general function: | The subscript <math>AA</math> here denotes an area-averaged value. The model parameters <math>\kappa_g</math>, <math>A_g</math>, <math>B_g</math> and <math>C_g</math> can be computed using the following general function: | ||
Line 19: | Line 20: | ||
:<math>Q(Re_\tau) = a + b \cdot tanh(c \cdot [Re_\tau - d])</math> | :<math>Q(Re_\tau) = a + b \cdot tanh(c \cdot [Re_\tau - d])</math> | ||
- | Where the a, b, c and d constants have been fitted using Princeton Superpipe measurements [2] as described in [3] and [4]: | + | Where the a, b, c and d constants have been fitted using Princeton Superpipe measurements [2] as described in equation S44 in [3] and table 1 in [4]: |
{| class="wikitable" style="margin-left:20px; text-align: center;" | {| class="wikitable" style="margin-left:20px; text-align: center;" | ||
Line 36: | Line 37: | ||
:<math>\delta</math> is the boundary layer thickness, which in fully developed pipe flow is the radius, or half the [[hydraulic diameter]], <math>d_h</math>. | :<math>\delta</math> is the boundary layer thickness, which in fully developed pipe flow is the radius, or half the [[hydraulic diameter]], <math>d_h</math>. | ||
- | :<math>f</math> is the Darcy friction factor. | + | :<math>f</math> is the [https://en.wikipedia.org/wiki/Darcy%E2%80%93Weisbach_equation Darcy-Weisbach friction factor]. |
:<math>Re_\tau = \frac{u_\tau \cdot \delta}{\nu_k}</math> is the Reynolds number based on the friction velocity <math>u_\tau</math> and the kinematic viscosity <math>\nu_k</math>. | :<math>Re_\tau = \frac{u_\tau \cdot \delta}{\nu_k}</math> is the Reynolds number based on the friction velocity <math>u_\tau</math> and the kinematic viscosity <math>\nu_k</math>. | ||
Line 46: | Line 47: | ||
A good estimate for the friction factor <math>f</math> in pipe flow is Cheng's correlation [13]: | A good estimate for the friction factor <math>f</math> in pipe flow is Cheng's correlation [13]: | ||
- | :<math>\frac{1}{f} = \left( \frac{Re_{d_h}}{64} \right) ^a \left( 1.8 \cdot log \frac{Re_{d_h}}{6.8} \right) ^ {2(1-a) | + | :<math>\frac{1}{f} = \left( \frac{Re_{d_h}}{64} \right) ^a \left( 1.8 \cdot log \frac{Re_{d_h}}{6.8} \right) ^ {2(1-a)b} \left( 2.0 \cdot log \frac{3.7 \; d_h}{k_s} \right) ^ {2(1-a)(1-b)}</math> |
:<math>a = \frac{1}{1 + \left( \frac{Re_{d_h}}{2720} \right) ^ 9}</math> | :<math>a = \frac{1}{1 + \left( \frac{Re_{d_h}}{2720} \right) ^ 9}</math> | ||
:<math>b = \frac{1}{1 + \left( \frac{Re_{d_h}}{160 \; d_h / k_s} \right) ^ 2}</math> | :<math>b = \frac{1}{1 + \left( \frac{Re_{d_h}}{160 \; d_h / k_s} \right) ^ 2}</math> | ||
+ | |||
+ | :<math>Re_{d_h} = \frac{U_m \cdot d_h}{\nu_k}</math> | ||
The [[hydraulic diameter]] <math>d_h</math> is the diameter of a circular pipe. For a rectangular pipe with width <math>a</math> and height <math>b</math> the hydraulic diameter can be computed from <math>d_h = 2 \; \frac{a b}{a + b}</math>. | The [[hydraulic diameter]] <math>d_h</math> is the diameter of a circular pipe. For a rectangular pipe with width <math>a</math> and height <math>b</math> the hydraulic diameter can be computed from <math>d_h = 2 \; \frac{a b}{a + b}</math>. | ||
The equivalent sand-grain-roughness <math>k_s</math> is dependent on the pipe surface properties. | The equivalent sand-grain-roughness <math>k_s</math> is dependent on the pipe surface properties. | ||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
== References == | == References == | ||
Line 84: | Line 69: | ||
{{reference-paper|author=[4] Basse, N.T.|year=2021|title=Scaling of global properties of fluctuating streamwise velocities in pipe flow: Impact of the viscous term|rest=Physics of Fluids, vol. 33, 125109, https://arxiv.org/abs/2109.11626}} | {{reference-paper|author=[4] Basse, N.T.|year=2021|title=Scaling of global properties of fluctuating streamwise velocities in pipe flow: Impact of the viscous term|rest=Physics of Fluids, vol. 33, 125109, https://arxiv.org/abs/2109.11626}} | ||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- | |||
- |
Latest revision as of 22:07, 8 December 2024
This section is under construction, please do not trust the information available here yet
Introduction
Fully developed turbulent pipe-flow inlet
For fully developed turbulent pipe flow the turbulence inlet properties can be estimated using the model presented by Basse in Table 1 of [1].
Turbulence Intensity:
Turbulence Length-Scale:
Turbulence Energy:
Turbulence Dissipation:
The subscript here denotes an area-averaged value. The model parameters , , and can be computed using the following general function:
Where the a, b, c and d constants have been fitted using Princeton Superpipe measurements [2] as described in equation S44 in [3] and table 1 in [4]:
Parameter | a | b | c | d |
---|---|---|---|---|
−1.18 | 1.52 | 2.15e-4 | -8786 | |
2.21 | -0.60 | 3.97e-5 | 11186 | |
1.28 | -0.32 | 5.85e-5 | 4609 | |
1.03 | -0.91 | 3.30e-5 | -11755 |
- is the boundary layer thickness, which in fully developed pipe flow is the radius, or half the hydraulic diameter, .
- is the Darcy-Weisbach friction factor.
- is the Reynolds number based on the friction velocity and the kinematic viscosity .
The friction velocity can be computed using the friction factor and the mean pipe flow velocity using the formula:
A good estimate for the friction factor in pipe flow is Cheng's correlation [13]:
The hydraulic diameter is the diameter of a circular pipe. For a rectangular pipe with width and height the hydraulic diameter can be computed from .
The equivalent sand-grain-roughness is dependent on the pipe surface properties.
References
[1] Basse, N.T. (2023), "An Algebraic Non-Equilibrium Turbulence Model of the High Reynolds Number Transition Region", Water 2023, 15, 3234. https://doi.org/10.3390/w15183234.
[2] Hultmark M, Vallikivi M, Bailey SCC and Smits AJ. (2013), "Logarithmic scaling of turbulence in smooth- and rough-wall pipe flow", J. Fluid Mech. 728, 376-395.
[3] Basse, N.T. (2023), "Supplementary Information: An algebraic non-equilibrium turbulence model of the high Reynolds number transition region", https://www.researchgate.net/publication/373108195_Supplementary_Information_An_algebraic_non-equilibrium_turbulence_model_of_the_high_Reynolds_number_transition_region.
[4] Basse, N.T. (2021), "Scaling of global properties of fluctuating streamwise velocities in pipe flow: Impact of the viscous term", Physics of Fluids, vol. 33, 125109, https://arxiv.org/abs/2109.11626.