Rahman-Siikonen-Agarwal Model
From CFD-Wiki
(Difference between revisions)
m (moved Rahman-Agarwal-Siikonen Model to Rahman-Siikonen-Agarwal Model: Corrected author order.) |
(→Introduction) |
(One intermediate revision not shown) |
Latest revision as of 19:47, 8 July 2013
Introduction
The Rahman-Agarwal-Siikonen (RAS) Turbulence model is a one-equation eddy viscosity model based on closure. The R-transport equation along with the Bradshaw and other empirical relations are used to solve for the turbulent viscosity. A damping function, , is used to represent the kinematic blocking by the wall. To avoid defining a wall distance, a Helmholtz-type elliptic relaxation equation is used for . The model has been validated against a few well-documented flow cases, yielding predictions in good agreement with DNS and experimental data.
RAS Model
The turbulent eddy viscosity is given by
The R-transport Equation:
Realizable Time Scale:
Coefficient :
Damping Function:
Other Model Coefficients:
and :
Constants:
References
- Rahman, M. M., Siikonen, T., and Agarwal, R. K. (2011), "Improved Low Re-Number One-Equation Turbulence Model", AIAA Vol. 49, No.4, April 2011.