CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Wiki > Arbitrary polyhedral volume

Arbitrary polyhedral volume

From CFD-Wiki

(Difference between revisions)
Jump to: navigation, search
m
Line 1: Line 1:
== Arbitrary Polyhedral Volume ==
== Arbitrary Polyhedral Volume ==
-
<p>
+
 
-
The volume of arbitrary polyhedral can be calculated by using Green-Gauss Theorem. <br>
+
The volume of arbitrary polyhedral can be calculated by using [[Greens theorem | Green-Gauss Theorem]].
-
<math>\int\limits_\Omega  {div(\vec F)d\Omega  = } \oint\limits_S {\vec F \bullet d\vec S}  
+
 
 +
:<math>\int\limits_\Omega  {div(\vec F)d\Omega  = } \oint\limits_S {\vec F \bullet d\vec S}  
</math>
</math>
-
<br>
+
 
-
By choosing the function<br>
+
By choosing the function
-
<math>
+
 
 +
:<math>
\vec F = \frac{{\left( {x\hat i + y\hat j + z\hat k} \right)}}{3}
\vec F = \frac{{\left( {x\hat i + y\hat j + z\hat k} \right)}}{3}
-
</math><br>
+
</math>
 +
 
Where (x,y,z) are centroid of the surface enclosing the volume under consideration.  
Where (x,y,z) are centroid of the surface enclosing the volume under consideration.  
-
As we have, <br>
+
As we have,
-
<math>
+
 
 +
:<math>
div(\vec F) = 1
div(\vec F) = 1
-
</math><br>
+
</math>
-
Hence the volume can be calculated as: <br>
+
 
-
<math>
+
Hence the volume can be calculated as:
 +
 
 +
:<math>
volume = \oint\limits_S {\vec F \bullet \hat ndS}
volume = \oint\limits_S {\vec F \bullet \hat ndS}
-
</math><br>
+
</math>
-
where the normal of the surface pointing outwards is given by: <br>
+
 
-
<math>
+
where the normal of the surface pointing outwards is given by:
 +
 
 +
:<math>
\hat n = (n_x \hat i + n_y \hat j + n_z \hat k)
\hat n = (n_x \hat i + n_y \hat j + n_z \hat k)
-
</math><br>
+
</math>
 +
 
Final expression could be written as <br>
Final expression could be written as <br>
-
<math>
+
 
 +
:<math>
volume = \frac{1}{3}\sum\limits_{faces} {\left[ {\left( {x \times n_x  + y \times n_y  + z \times n_z } \right) \bullet S} \right]}
volume = \frac{1}{3}\sum\limits_{faces} {\left[ {\left( {x \times n_x  + y \times n_y  + z \times n_z } \right) \bullet S} \right]}
-
</math><br>
+
</math>
 +
 
where S is magnitude of Surface Area.
where S is magnitude of Surface Area.
-
</p>
 

Revision as of 14:03, 12 September 2005

Arbitrary Polyhedral Volume

The volume of arbitrary polyhedral can be calculated by using Green-Gauss Theorem.

\int\limits_\Omega  {div(\vec F)d\Omega  = } \oint\limits_S {\vec F \bullet d\vec S}

By choosing the function


\vec F = \frac{{\left( {x\hat i + y\hat j + z\hat k} \right)}}{3}

Where (x,y,z) are centroid of the surface enclosing the volume under consideration. As we have,


div(\vec F) = 1

Hence the volume can be calculated as:


volume = \oint\limits_S {\vec F \bullet \hat ndS}

where the normal of the surface pointing outwards is given by:


\hat n = (n_x \hat i + n_y \hat j + n_z \hat k)

Final expression could be written as


volume = \frac{1}{3}\sum\limits_{faces} {\left[ {\left( {x \times n_x  + y \times n_y  + z \times n_z } \right) \bullet S} \right]}

where S is magnitude of Surface Area.

My wiki