CFD Online Logo CFD Online URL
www.cfd-online.com
[Sponsors]
Home > Wiki > Favre averaged Navier-Stokes equations

Favre averaged Navier-Stokes equations

From CFD-Wiki

(Difference between revisions)
Jump to: navigation, search
Line 1: Line 1:
 +
The instantaneous continuity equation,
 +
momentum equation and energy equation
 +
for a compressible fluid can be written as:
 +
 +
<math>
 +
\frac{\partial \rho}{\partial t} +
 +
\frac{\partial}{\partial x_j}\left[ \rho u_j \right] = 0
 +
</math>
 +
 +
<math>
 +
\frac{\partial}{\partial t}\left( \rho u_i \right) +
 +
\frac{\partial}{\partial x_j}
 +
\left[ \rho u_i u_j + p \delta_{ij} - \tau_{ji} \right] = 0
 +
</math>
 +
 +
<math>
 +
\frac{\partial}{\partial t}\left( \rho e_0 \right) +
 +
\frac{\partial}{\partial x_j}
 +
\left[ \rho u_j e_0 + u_j p + q_j - u_i \tau_{ij} \right] = 0
 +
</math>
 +
 +
For a Newtonian fluid, assuming Stokes Law for mono-atomic gases, the viscous
 +
stress is given by:
 +
 +
<math>
 +
\tau_{ij} = 2 \mu S_{ij}^*
 +
</math>
 +
 +
Where the trace-less viscous strain-rate is defined
 +
by:
 +
 +
<math>
 +
S_{ij}^* \equiv
 +
\frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} +
 +
                \frac{\partial u_j}{\partial x_i} \right) -
 +
                \frac{1}{3} \frac{\partial u_k}{\partial x_k} \delta_{ij}
 +
</math>
 +
 +
The heat-flux, <math>q_j</math>, is given by Fourier's law:
 +
 +
<math>
 +
q_j = -\lambda \frac{\partial T}{\partial x_j}
 +
    \equiv -C_p \frac{\mu}{Pr} \frac{\partial T}{\partial x_j}
 +
</math>
 +
 +
Where the laminar Prandtl number <math>Pr</math> is defined
 +
by:
 +
 +
<math>
 +
Pr \equiv \frac{C_p \mu}{\lambda}
 +
</math>
 +
 +
To close these equations it is also necessary to specify an equation of state.
 +
Assuming a calorically perfect gas the following relations are valid:
 +
 +
<math>
 +
\gamma \equiv \frac{C_p}{C_v} ~~,~~
 +
p = \rho R T ~~,~~
 +
e = C_v T ~~,~~
 +
C_p - C_v = R
 +
</math>
 +
 +
Where <math>\gamma, C_p, C_v</math> and <math>R</math> are constant.
 +
 +
The total energy <math>e_0</math> is defined by:
 +
 +
<math>
 +
e_0 \equiv e + \frac{u_k u_k}{2}
 +
</math>
 +
 +
Note that the
 +
corresponding expression~\ref{eq:fav_total_energy}
 +
for Favre averaged turbulent flows contains an
 +
extra term related to the turbulent energy.
 +
 +
 +
 +
<math>
<math>
\frac{\partial \overline{\rho}}{\partial t} +
\frac{\partial \overline{\rho}}{\partial t} +
Line 14: Line 92:
= 0
= 0
</math>
</math>
 +
 +
[[#total_energy]]
 +
 +
[[Category:Fluid Dynamics]][[Category:Equations]]

Revision as of 07:40, 5 September 2005

The instantaneous continuity equation, momentum equation and energy equation for a compressible fluid can be written as:


\frac{\partial \rho}{\partial t} +
\frac{\partial}{\partial x_j}\left[ \rho u_j \right] = 0


\frac{\partial}{\partial t}\left( \rho u_i \right) +
\frac{\partial}{\partial x_j}
\left[ \rho u_i u_j + p \delta_{ij} - \tau_{ji} \right] = 0


\frac{\partial}{\partial t}\left( \rho e_0 \right) +
\frac{\partial}{\partial x_j}
\left[ \rho u_j e_0 + u_j p + q_j - u_i \tau_{ij} \right] = 0

For a Newtonian fluid, assuming Stokes Law for mono-atomic gases, the viscous stress is given by:


\tau_{ij} = 2 \mu S_{ij}^*

Where the trace-less viscous strain-rate is defined by:


S_{ij}^* \equiv
 \frac{1}{2} \left(\frac{\partial u_i}{\partial x_j} +
                \frac{\partial u_j}{\partial x_i} \right) -
                \frac{1}{3} \frac{\partial u_k}{\partial x_k} \delta_{ij}

The heat-flux, q_j, is given by Fourier's law:


q_j = -\lambda \frac{\partial T}{\partial x_j}
    \equiv -C_p \frac{\mu}{Pr} \frac{\partial T}{\partial x_j}

Where the laminar Prandtl number Pr is defined by:


Pr \equiv \frac{C_p \mu}{\lambda}

To close these equations it is also necessary to specify an equation of state. Assuming a calorically perfect gas the following relations are valid:


\gamma \equiv \frac{C_p}{C_v} ~~,~~
p = \rho R T ~~,~~
e = C_v T ~~,~~
C_p - C_v = R

Where \gamma, C_p, C_v and R are constant.

The total energy e_0 is defined by:


e_0 \equiv e + \frac{u_k u_k}{2}

Note that the corresponding expression~\ref{eq:fav_total_energy} for Favre averaged turbulent flows contains an extra term related to the turbulent energy.




\frac{\partial \overline{\rho}}{\partial t} +
\frac{\partial}{\partial x_i}\left[ \overline{\rho} \widetilde{u_i} \right] = 0


\frac{\partial}{\partial t}\left( \overline{\rho} \widetilde{u_i} \right) +
\frac{\partial}{\partial x_j}
\left[
\overline{\rho} \widetilde{u_j} \widetilde{u_i}
+ \overline{p} \delta_{ij}
- \widetilde{\tau_{ji}^{tot}}
\right]
= 0

#total_energy

My wiki